You Searched For:
**Author:**
werner heisenberg
**Edit Your Search**

**
Used
**
**Hardcover**

Quantity Available: 1

From: Vangsgaards Antikvariat (DK-1171 Copenhagen K, ., Denmark)

**Item Description: **Band V der Gesamt-Ausgabe der Werke. Endgültige Fassung. Georg Bondi, Berlin 1932. With a frontispiece portrait by Melchior Lechter. 8vo. 125+(3) pages. Bound in the orig. blue cloth binding with gilt lettering and decoration on the front cover and spine. Untrimmed. In a fine condition with no apparent signs of wear. * Inscribed by Werner Heisenberg to Niels Bohr on his birthday: 'Herzlichen Glückwunsch zum 7. Oktober mit vielen Dank für die vergangenen schönen Wochen / dein Werner Heisenberg [signature in full] / 5.10.1933.'** Outstanding association copy inscribed from one Nobel Prize winner in physics to another. The two major scientists first met at the "Bohr-Festspiele" in 1922, when Heisenberg was only 21. He immediately made a strong impression on Bohr, who invited him to Copenhagen. Heisenberg worked in Copenhagen in 1924-25 as Niels Bohr's assistant and later as associate professor at the University of Copenhagen in 1926-27 and it was during this stay Heisenberg developed his famous 'Uncertainty principle'.*** After the war Werner Heisenberg became a somewhat controversial figure, because he had decided to remain in Germany after the Nazi takeover in 1933 and continued to work for Germany throughout the period of the Third Reich as head of the "Uranium Project". It also remains controversial what happened at the famous meeting between Bohr and Heisenberg in 1941 - did Heisenberg reveal Germany's intentions of developing a nuclear bomb?**** In light of the political situation in Germany in 1930s, it is highly interesting that Heisenberg presents a work by Stefan George to Niels Bohr. Stefan George (1868-1933) was a German poet with an aristocratic life philosophy, who believed that the highest rank of mankind was the poet, and that society should be ruled by intellectuals. He had a great number of ardent followers and many considered him a prophet. His anti-democratic stand, his post-romantic Übermensch philosophy and his firm nationalistic beliefs appealed greatly to the Nazi regime, and Goebbels wanted him as a leader of the Academy of Arts, a position George declined. That Heisenberg presents Stefan George to Bohr may certainly show something of Heisenberg's political interest, if not at least his poetical.***** Unique object that unites two of the most important scientists of the 20th century, whose meetings changed world history. Bookseller Inventory # 424238

More Information About This Seller | Ask Bookseller a Question 1.

Published by 1929-1930 (1929)

**
Used
**
**
Softcover
**

Quantity Available: 1

From: Jeremy Norman's historyofscience (Novato, CA, U.S.A.)

**Item Description: **1929-1930, 1929. Heisenberg, Werner (1901-76) and Wolfgang Pauli (1900-1958). (1) Zur Quantendynamik der Wellenfelder. Offprint from Zeitschrift für Physik 56 (1929). 61pp. 231 x 160 mm. Original printed wrappers, spine repaired. (2) Zur Quantentheorie der Wellenfelder. II. Offprint from Zeitschrift für Physik 59 (1930). 168-190pp. 231 x 160 mm. Original printed wrappers, spine repaired with clear tape. Together 2 items. Small mark from paper clip on wrappers of no. (1), small tear in front wrapper of no. (2), but very good. First Editions, Offprint Issues. Heisenberg and Pauli’s two-part paper contains the first full-fledged relativistic quantum field theory, representing the "formal invention of quantum electrodynamics" (Miller, Early Quantum Electrodynamics: A Source Book, p. xiii). "This extremely technical and mathematical branch of quantum physics, the foundations of which were laid by Heisenberg, Dirac, Pauli, Jordan, and their colleagues during the late 1920s and early 1930s, continues to this day with much the same program and approach . . . [Heisenberg was] a leading member of the small band of abstract theorists who established the program and laid the foundations of relativistic quantum field theory as it has been pursued ever since" (Cassidy, Uncertainty: The Life and Science of Werner Heisenberg, p. 276). In this paper—the only one that Heisenberg and Pauli co-authored—the two physicists attempted to establish "a consistent extension of the quantum formalism that would yield a satisfactory unification of quantum mechanics and relativity theory . . . In 1929, drawing upon the work of Dirac, Jordan, Oskar Klein, and others, Heisenberg and Pauli succeeded in formulating a general gauge-invariant relativistic quantum field theory by treating particles and fields as separate entities interacting through the intermediaries of field quanta. The formalism led to the creation of a relativistic quantum electrodynamics, equivalent to that developed by Dirac, which, despite its puzzling negative energy states, seemed satisfactory at low energies and small orders of interaction. But at high energies, where particles approach closer than their radii, the interaction energy diverges to infinity. Even at rest, a lone electron interacting with its own field seemed to possess an infinite self-energy . . . Attention was directed to the resolution of such difficulties for more than two decades" (Dictionary of Scientific Biography). Mehra & Rechenberg, The Historical Development of Quantum Theory, 6, pp. 312-26. Bookseller Inventory # 43254

More Information About This Seller | Ask Bookseller a Question 2.

**
Used
**

Quantity Available: 1

From: Lynge & Søn ILAB-LILA (Copenhagen, ., Denmark)

**Item Description: **Berlin, Julius Springer, 1925-26. Bound in 4 nearly uniform contemp. hcloth. Edges a little rubbed. Stamp on title-pages. In "Zeitschrift für Physik. Hrsg. von Karl Scheel", Vols 33,34,35 and 36. VII,950;VII,953;VIII,954;VII,951 pp. The offered papers: pp. 879-893 (vol.33), pp. 858-888 (vol.34), pp.557-615 (vol.35) and pp.336-363 (vol. 36). Internally fine and clean. First printings of these four absolutely fundamental papers, which together MARK THE TURNING POINT IN THE FABRICATION OF A NEW PHYSICS, Quantum Mechanics, also called "Matrix Mechanics"."In May 1925, Heisenberg took on a new and difficult problem, the calculation of the line intensities of the hydrogen spectrum. Just as he had done with Kramers and Bohr, Heisenberg began with a Fourier analysis of the electron orbits. When the hydrogen orbit proved too difficult, he turned to the anharmonic oscillator. With a new multiplication rule relating the amplitudes and frequencies of the Fourier components to observed quantities, Heisenberg succeeded in quantizing the equations of motion for this system in close analogy with the classical equations of motion.in June Heisenberg returned to Göttingen, where he drafted his fundamental paper [the first paper offered], which he completed in July. In this paper Heisenberg proclaimed that the quantum mechanics of atoms should contain only relations between experimentally observable quantities. The resulting formalism served as the starting point for the new quantum mechanics, based, as Heisenberg's multiplication rule implied, on the manipulation of ordered sets of data forming a mathematical matrix.Born and his assistant, Pascual Jordan, quickly developed the mathematical content of Heisenberg's work into a consistent theory with the help of abstract matrix algebra [the second paper offered].Their work, in collaboration with Heisenberg, culminated in their "three-man paper" ["Dreimännerarbeit" - the third paper offered] that served as the foundation of matrix mechanics. Confident of the correctness of the new theory, Heisenberg, Pauli, Born, Dirac, and others began applying the difficult mathematical formalism to the solution of lingering problems." (DSB).In the last paper offered, the Pauli-paper, he shows that the hydrogen spectrum can be derived from the new theory. His starting-point constitutes, due to Lez, a method for integrating the classical equations of motion of a particle in a Coulomb field. Pauli's paper was received on January 17, 1926, but the main result must have been obtained before November 3, 1925, for on that date, Heisenberg writes Pauli: ".Ich brauche Ihnen wohl nicht zu schreiben, wie sehr ich mich über die neue Theorie des Wasserstoffs freue." Pauli's paper convinced most physicists that Quantum Mechanics is correct. (Van der Waerden). Bookseller Inventory # 39170

More Information About This Seller | Ask Bookseller a Question 3.

Published by Julius Springer, Berlin (1925)

**
Used
**
**Hardcover**
** First Edition **

Quantity Available: 1

From: Manhattan Rare Book Company, ABAA, ILAB (New York, NY, U.S.A.)

**Item Description: **Julius Springer, Berlin, 1925. Hardcover. Book Condition: Very Good. 1st Edition. FIRST EDITIONS of three papers that defined a discipline: THE THEORETICAL FOUNDATION FOR QUANTUM MECHANICS. "In May 1925, Heisenberg deliberately abandoned the classical picture of particles and orbits, and took a long, hard look at the mathematics that describes the associations between pairs of quantum states, without asking himself how the quantum entity gets from state A to state B. In the summer of 1925, working with Pasqual Jordan, Born translated Heisenberg's mathematical insight into the formal language of matrices, and Born, Heisenberg and Jordan together published a full account of the work, in what became known as the 'three-man paper'. The equations of Newtonian (classical) mechanics were replaced by similar equations involving matrices, and many of the fundamental concepts of classical mechanics- such as the conservation of energy- emerged naturally from the new equations. Matrix mechanics seemed to contain Newtonian Mechanics within itself, in much the same way that the equations of the general theory of relativity include the Newtonian description of gravity as a special case" (Gribben, Q is for Quantum). Heisenberg, Werner. Uber quantentheorestische Umdeutung kinematischer und mechanischer Beziehungen. Particle Physics: One Hundred Years of Discoveries: "Foundation of quantum mechanics, Heisenberg approach. Nobel Prize to W. Heisenberg awarded in 1932 'for the creation of quantum mechanics'". Heisenberg; Born, Max and Jordan, Pasqual. Zur Quantenmechanik.Particle Physics: One Hundred Years of Discoveries: "Invention of matrix formalism for the Heisenberg quantum mechanics. Systems with one degree of freedom." Heisenberg, Born, Jordan. Zur Quantenmechanik II. Particle Physics: One Hundred Years of Discoveries: "Development of matrix formalism for the Heisenberg quantum mechanics. Systems with arbitrary many degrees of freedom." IN: Zeitschrift fur Physik, Vols. 33 (pp. 879-893), 34 (858-888), 35 (557-615). Berlin: Julius Springer, 1925-1926. Octavo, volume 33 with half black cloth over marbled boards; volume 34 and 35 in half red cloth over red boards. Volume 33 is taller (wider margins) than the other two volumes. A few institutional stamps to preliminaries. All three volumes with stamps from the prestigious Gmelin Institute (after 1996, part of the Max Planck Institute). Overall, very good condition. Bookseller Inventory # 465

More Information About This Seller | Ask Bookseller a Question 4.

**
Used
**
**Hardcover**

Quantity Available: 1

From: Lynge & Søn ILAB-LILA (Copenhagen, ., Denmark)

**Item Description: **Berlin, Julius Springer, 1927. 8vo. Contemporary full cloth with gilt lettering to spine. A small paper-label pasted to lower part of spine. Very light edgewear. Corners a bit bumped. In: 'Zeitschrift für Physik', Volume 43, p.172-198. The entire volume offered, VII,936 pp. First appearance of the first announcement of Heisenberg's famous "Uncertainty Principle", stating that it is impossible to determine accurately and both members of specific pairs of atomic variables simultaneously, and that the minimum product of the two variables are proportional to Planck's constant 'h' - one of the most important and celebrated findings in modern physics."Heisenberg's paper 'On the physical content of the quantum theoretical kinematics and mechanics' was received by the publishers on 23 March, after Bohr had returned - and had correctly criticized some substantial points in the manuscript. All the same Heisenberg's work is on a par with his discovery paper of quantum mechanics and represents a most solid contribution to its interpretation. It is THE FIRST PAPER IN WHICH THE QUESTION OF WHAT IS OBSERVABLE AND WHAT IS NOT IS QUANTITATIVELY DISCUSSED IN THE CONTEXT OF QUANTUM MECHANICS. His work marks the beginning of a subject on which volumes have since been written: the measurement problem in quantum physics." (Pais in "Niels Bohr's Times", p. 304). Bookseller Inventory # 43294

More Information About This Seller | Ask Bookseller a Question 5.

**
Used
**

Quantity Available: 1

From: Atticus Rare Books (West Branch, IA, U.S.A.)

**Item Description: **FIRST EDITIONS OF THREE LANDMARK PAPERS THAT TOGETHER FORMED THE THEORETICAL FOUNDATION OF QUANTUM MECHANICS. "In spite of its high-sounding name and its successful solutions of numerous problems in atomic physics, quantum theory, and especially the quantum theory of polyelectronic systems, prior to 1925, was, from the methodological point of view, a lamentable hodgepodge of hypotheses, principles, theorems, and computational recipes rather than a logical consistent theory. Every single quantum-theoretic problem had to be solved first in terms of classical physics; its classical solution had then to pass through the mysterious sieve of the quantum conditions or, as it happened in the majority of cases, the classical solution had to be translated into the language of quanta in conformance with the correspondence principle? In short, quantum theory still lacked two essential characteristics of a full-fledged scientific theory, conceptual autonomy and logical consistency" (Jammer, The Conceptual Development of Quantum Mechanics, 196). The work of Heisenberg, Born, and Jordan in these papers began to rectify these issues and together marked the "starting point for the new quantum mechanics," also called matrix mechanics (DSB). "In May 1925, Heisenberg took on a new and difficult problem, the calculation of the line intensities of the hydrogen spectrum. Just as he had done with Kramers and Bohr, Heisenberg began with a Fourier analysis of the electron orbits. When the hydrogen orbit proved too difficult, he turned to the an harmonic oscillator. With a new multiplication rule relating the amplitudes and frequencies of the Fourier components to observed quantities, Heisenberg succeeded in quantizing the equations of motion for this system in close analogy with the classical equations of motion. In June Heisenberg returned to Göttingen, where he drafted his fundamental paper [the first paper offered], which he completed in July. In this paper Heisenberg proclaimed that the quantum mechanics of atoms should contain only relations between experimentally observable quantities. The resulting formalism served as the starting point for the new quantum mechanics, based, as Heisenberg's multiplication rule implied, on the manipulation of ordered sets of data forming a mathematical matrix. Born and his assistant, Pascual Jordan, quickly developed the mathematical content of Heisenberg's work into a consistent theory with the help of abstract matrix algebra [the second paper offered].Their work, in collaboration with Heisenberg, culminated in their "three-man paper" ["Dreimännerarbeit" - the third paper offered] that served as the foundation of matrix mechanics. Confident of the correctness of the new theory, Heisenberg, Pauli, Born, Dirac, and others began applying the difficult mathematical formalism to the solution of lingering problems" (DSB). CONDITION & DETAILS: In: Zeitschrift für Physik 33 (1925), 34 (1925), 35 (1926). 8vo. (9 x 6.25 inches; 225 x 156mm). Three full volumes. All but invisible ex-libris stamp on title pages; no other library markings whatsoever. Handsomely rebound in grey linen, gilt-tooled and lettered at the spine. Tightly and solidly bound. Very clean inside and out. Near fine condition. Bookseller Inventory # 9

More Information About This Seller | Ask Bookseller a Question 6.

Published by Julius Springer, Berlin (1925)

**
Used
**
** First Edition **

Quantity Available: 1

From: SOPHIA RARE BOOKS (København, V, Denmark)

**Item Description: **Julius Springer, Berlin, 1925. First edition. A very fine copy (not ex-library) of his breakthrough paper, announcing his discovery of matrix mechanics. "A severe attack of hay fever in early June forced Heisenberg’s retreat to the island of Helgoland. There he completed the calculation of the anharmonic oscillator, determined the constants of motion, and obtained from his multiplication rule the Thomas Kuhn summation rule for spectral lines. After nearly two weeks on Helgoland, Heisenberg returned to Göttingen, where he drafted his fundamental paper 'Über die quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen', which he completed in July. In this paper Heisenberg proclaimed that the quantum mechanics of atoms should contain only relations between experimentally observable quantities. The resulting formalism served as the starting point for the new quantum mechanics, based, as Heisenberg’s multiplication rule implied, on the manipulation of ordered sets of data forming a mathematical matrix." (DSB). In: Zeitschrift für Physik, Vol. 33, pp.879-893. The complete volume offered (VIII,950 pp.) in a nice contemporary half calf binding with gilt spine lettering. Completely clean throughout - a fine copy. Bookseller Inventory # 2911

More Information About This Seller | Ask Bookseller a Question 7.

Published by Julius Springer, Berlin (1926)

**
Used
**
**
Soft cover
**
** First Edition **

Quantity Available: 1

From: Manhattan Rare Book Company, ABAA, ILAB (New York, NY, U.S.A.)

**Item Description: **Julius Springer, Berlin, 1926. Soft cover. Book Condition: Very Good. 1st Edition. FIRST EDITION IN ORIGINAL WRAPPERS of the famous "three-man paper," the first, complete, self-consistent description of quantum mechanics. "In 1925, after an extended visit to Bohr's Institute of Theoretical Physics at the University of Copenhagen, Heisenberg tackled the problem of spectrum intensities of the electron taken as an anharmonic oscillator (a one-dimensional vibrating system). His position that the theory should be based only on observable quantities was central to his paper of July 1925, "Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen" ("Quantum-Theoretical Reinterpretation of Kinematic and Mechanical Relations"). Heisenberg's formalism rested upon noncommutative multiplication; Born, together with his new assistant Pascual Jordan, realized that this could be expressed using matrix algebra, which they used in a paper submitted for publication in September as "Zur Quantenmechanik" ("On Quantum Mechanics"). By November, Born, Heisenberg, and Jordan had completed "Zur Quantenmechanik II" ("On Quantum Mechanics II"), colloquially known as the "three-man paper," which is regarded as the foundational document of a new quantum mechanics" (Britannica's Guide to the Nobel Prizes). Particle Physics: One Hundred Years of Discoveries: "Development of matrix formalism for the Heisenberg quantum mechanics. Systems with arbitrary many degrees of freedom." Provenance: With ownership signature on front wrapper of E.F. Barker, noted American physicist who worked primarily at the University of Michigan. IN: Zeitschrift für Physik, Band 35, February 1926, pp. 557-615. Berlin: Julius Springer, 1926. Octavo, original wrappers; custom box. A few creases to wrappers, chips to spine. RARE in original wrappers. Bookseller Inventory # 1276

More Information About This Seller | Ask Bookseller a Question 8.

**
Used
**
**Hardcover**
** First Edition **

Quantity Available: 1

From: Lynge & Søn ILAB-LILA (Copenhagen, ., Denmark)

**Item Description: **Berlin, Julius Springer, 1925. 8vo. Bound in full cloth with library label to lower part of spine and library stamps to front free end paper. In "Zeitschrift für Physik, 33. Band, 1925". Front boards very loose and spine almost detached. Internally fine and clean. [Heisenberg) Pp. 879-893. [Entire issue: VII, (1), 950 pp.]. First printing of Heiseberg's seminal and groundbreaking paper which laid the foundation for matrix mechanics and thereby giving birth to modern quantum mechanics; a theory that states quantum mechanics should be based "exclusively on relationship between quantities which in principle are observable" (From the abstract). "The alternative, which he [Heisenberg] chose in his historic paper [the present] and which led to the development of matrix machanics, the earliest formulation of modern quantum mechanics, abandoned Bohr's description of motion in terms of classical physics altogether and replaced it by a description in terms of what Heisenberg regarded as observable magnitudes" (Jammer, The Conceptual Development of Quantum Mechanics, P. 197)."After nearly two weeks on Helgoland, Heisenberg returned to Göttingen, where he drafted his fundamental paper "Über die quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen," which he completed in July. In this paper Heisenberg proclaimed that the quantum mechanics of atoms should contain only relations between experimentally observable quantities. Theresulting formalism served as the starting point for the new quantum mechanics, based, as Heisenberg's multiplication rule implied, on the manipulation of ordered sets of data forming a mathematical matrix." (DSB)Before Heisenberg's discovery the Bohr-Sommerfeld quantum theory was the leading theory. By the early 1920's most physicists agreed that the Bohr-Sommerfeld theory had problems and that there was a need to replace it with a new quantum theory. Heisenberg's main achievement was to replace the idea of orbital path with what could be observed, namely the light emitted and absorbed by the atoms. Because of the unfamiliar mathematics which Heisenberg's new theory used, several physicists had doubts about its consistency. But Max Born soon realized that the laws, which the theory relied on, were the same as the laws, which apply to matrix algebra. In 1925 Born and his student Pascual Jordan published "Zur Quantenmechanik" which reformulated Heisenbergs theory in terms of matrices, in the special case of one degree of freedom. With "Zur Quantenmechanik II" (or the "Three Man Paper") published 1926, Heisenberg, Born and Jordan described the new theory in the general case of arbitrarely many freedom degrees. Bookseller Inventory # 45483

More Information About This Seller | Ask Bookseller a Question 9.

Published by Julius Springer, Berlin, 1929-1930

**
Used
**
** First Edition **

Quantity Available: 1

From: Charles Parkhurst Rare Books, Inc. ABAA (Prescott, AZ, U.S.A.)

**Item Description: **Julius Springer, Berlin, 1929-1930. First Edition. In "Zeitschrift fur Physik" Vol. 56, 1-61pp. and Vol. 59, 168-190pp; bound in blue cloth, spine lettering and call letters gilt; stamp of the Mount Wilson Observatory on front free endpaper, no other library markings. Both volumes are fine and housed in a custom clamshell. These are the only papers on which Heisenberg and Pauli, both Nobel Laureates in Physics (1932 and 1945) collaborated. These are unquestionably important early works in the development of relativistic quantum electrodynamic theory. Bookseller Inventory # pb.0775

More Information About This Seller | Ask Bookseller a Question 10.

Published by Julius Springer, Berlin (1925)

**
Used
**
**Hardcover**
** First Edition **

Quantity Available: 1

From: Milestones of Science Books (Ritterhude, D, Germany)

**Item Description: **Julius Springer, Berlin, 1925. Hardcover. Book Condition: Very Good. 1st Edition. 8vo - over 7¾ - 9¾" tall. In: Zeitschrift für Physik. Vol. 33, pp. 879-893. Berlin: J. Springer, 1925. 8vo (22,5x16 cm). Whole vol. with 256 text illustr. and vii, 950 pp. Volume title with library stamp and shelf number. Contemp. half cloth with gilt spine and remnants of glue on spine. ---- PMM 417b; Poggendorff VI, 1070 - First edition of Heisenberg's groundbreaking paper announcing the invention of quantum mechanics, published in the "Zeitschrift für Physik" on July 25, 1925. - Entire volume, also includes two papers on quantum theory by Max Born and Pascal Jordan: "Zur Quantentheorie aperiodischer Vorgänge", pp. 479-508. (cf. DSB XV, 41). ---- Erste Ausgabe der grundlegenden Untersuchung. "Mit ihr war das Fundament der neuen, mit nicht vertauschbaren Größen operierenden Quantenmechanik geschaffen, die mit einem Schlag alle Unstimmigkeiten der älteren Theorie beseitigte" (DBE). - Im vollständigen Band, darin auch die beiden Arbeiten "Zur Quantentheorie aperiodischer Vorgänge" von M. Born u. P. Jordan (S. 479-508). Bookseller Inventory # 001726

More Information About This Seller | Ask Bookseller a Question 11.

Published by Julius Springer 1929-30, Berlin (1929)

**
Used
**
** First Edition **

Quantity Available: 1

From: SOPHIA RARE BOOKS (København, V, Denmark)

**Item Description: **Julius Springer 1929-30, Berlin, 1929. First editions, first printings. A fine set, in the original wrappers, of the two papers in which Heisenberg and Pauli gave "for the first time the foundations for quantum electrodynamics in the way we know it today." (Abraham Pais). "Three years before the discovery of the positron Heisenberg and Pauli – in two papers ‘Zur Quantenmechanik der Wellenfelder’ and ‘Zur Quantenmechanik der Wellenfelder II’ of 29 March and 7 September 1929, respectively – took a decisive step forward to develop a consistent theory of quantum electrodynamics." (Mehra & Milton). "Heisenberg’s foremost scientific concern after 1927 involved the search for a consistent extension of the quantum formalism that would yield a satisfactory unification of quantum mechanics and relativity theory. This required the formulation of a covariant theory of interacting particles and fields that accounted for elementary processes at high energies and small distances. In 1929, drawing upon the work of Dirac, Jordan, Oskar Klein, and others, Heisenberg and Pauli succeeded in formulating a general gauge-invariant relativistic quantum field theory by treating particles and fields as separate entities interacting through the intermediaries of field quanta. "The formalism led to the creation of a relativistic quantum electrodynamics, equivalent to that developed by Dirac, which, despite its puzzling negative energy states, seemed satisfactory at low energies and small orders of interaction. But at high energies, where particles approach closer than their radii, the interaction energy diverged to infinity. Even at rest, a lone electron interacting with its own field seemed to possess an infinite self-energy, much as it did in classical electrodynamics. Attention was directed to the resolution of such difficulties for more than two decades." (DSB under Heisenberg). "Heisenberg and Pauli were well aware of the shortcomings of their theory: the divergence difficulties and the problem of negative energies for the electron. However, the importance of the Heisenberg-Pauli theory cannot be exaggerated; it opened the road to a general theory of quantized fields and thereby prepared the tools, albeit not perfect ones, for the Pauli-Fermi theory of beta-decay and for the meson theories." (Mehra & Milton). Mehra & Milton, Climbing the Mountain: The Scientific Biography of Julian Schwinger, pp. 186-87; Pais, On the Dirac theory of the electron. An annotation, in Werner Heienberg: Collected Works, Vol. AII, pp.95-105. 8vo: 229 x 156 mm. In: Zeitschift für Physik, vol. 56, no. 1-2, pp. 1-61; vol. 59, no. 3-4, pp. 168-90. The two complete issues offered here in the original printed wrappers, some light wear to the spine strip of the first issue and two small pieces missing from the lower left corner (front and rear), otherwise very fine with no stamps or other markings. Rare in such fine condition. A fine set, in the original wrappers, of the two papers in which Heisenberg and Pauli gave "for the first time the foundations for quantum electrodynamics in the way we know it today." (Abraham Pais). "Three years before the discovery of the positron Heisenberg and Pauli – in two papers ‘Zur Quantenmechanik der Wellenfelder’ and ‘Zur Quantenmechanik der Wellenfelder II’ of 29 March and 7 September 1929, respectively – took a decisive step forward to develop a consistent theory of quantum electrodynamics." (Mehra & Milton). "Heisenberg’s foremost scientific concern after 1927 involved the search for a consistent extension of the quantum formalism that would yield a satisfactory unification of quantum mechanics and relativity theory. This required the formulation of a covariant theory of interacting particles and fields that accounted for elementary processes at high energies and small distances. In 1929, drawing upon the work of Dirac, Jordan, Oskar Klein, and others, Heisenberg and Pauli succeeded in formulating a general gauge-invariant relativistic quantum field theory by treating particles and fields as separate entities in. Bookseller Inventory # 2627

More Information About This Seller | Ask Bookseller a Question 12.

**
Used
**
**Hardcover**
** First Edition **

Quantity Available: 1

From: Lynge & Søn ILAB-LILA (Copenhagen, ., Denmark)

**Item Description: **Berlin, J. Springer, 1932-33. 8vo. Volume 77 and 78 bound in two uniform contemporary half cloth bindings with gilt lettering to spine. Volume 30 in a contemporary full cloth binding with black leather title-label to spine. Volume 78 and 78 with minor wear to spine, internally two very nice and clean copies. Volume 80 with wear to spine and minor overall soiling to extremities. Ex-library copy with library stamp [Bedford College] to pasted down front free end-paper and title page. Internally a clean copy. [Über den Bau der Atomkernen I, Vol. 77:] Pp. 1-11. [Über den Bau der Atomkernen II, Vol. 78:] Pp. 156-164. [Über den Bau der Atomkernen III, Vol. 80:] Pp. 587-596. [Entire volumes: VIII, 837 pp.; VIII, 857 pp.; VIII, 844 pp.]. First printing of Heisenberg's groundbreaking neutron-proton model. The three papers "mark the transition to the modern view on nuclear forces." (Pais. Inward Bound. P. 413). Shortly after Chadwick discovered the neutron in 1932, Heisenberg developed a theory suggesting that atomic nuclei are composed of protons and neutrons. This introduced the concept of the nuclear exchange force and isotopic spin."Soon after the discovery of the neutron in 1932 [By Chadwick], Heisenberg developed a neutron-proton model of the nucleus by introducing the concept of the nuclear exchange force and the formalism of isotopic spin. Nonrelativistic quantum mechanics could be applied to the nucleus, Heisenberg showed, as long as long as on did not consider the structure of nucleons. Heisenberg's work served as the basis for contemporary nuclear physics, of fields. In 1935 Heisenberg and his assistants, especially Weizsäcker. Heisenberg preferred to continue the search for a consistent quantum physics, much of which was pursued by his assistant Hans Euler discovered that nonlinear interactions in positron theory, which yielded photonphoton scattering, could be represented by treating the electron as possessing a minimum size, below which the interferences predominated." (DSB).Heisenberg played an important role in the unsuccessful attempt German attempt to build a nuclear reactor.The three volumes contain numerous important contributions by contemporary physicians. Bookseller Inventory # 44765

More Information About This Seller | Ask Bookseller a Question 13.

Published by Stuttgart, Belser-Presse 1971. (1971)

**
Used
**

Quantity Available: 1

From: Antiquariat Eckert & Kaun GbR (Bremen, ., Germany)

**Item Description: **Stuttgart, Belser-Presse 1971., 1971. Folio, 79 (3) S., 1 Bl. mit drei Lithographien, Orig.-Leinen m. Orig.-Leinenschuber. Eines von 185 (gesamt 205) nummerierten und vom Künstler im Impressum signierten Exemplaren.- Spies-Leppin 198 D I-II; Spindler, Typen 64.7.- (= Siebenter Druck der Belser-Presse).- Tadelloses Exemplar. ***Für unsere Schweizer Kunden: Konto in der Schweiz vorhanden***. Bookseller Inventory # 45711

More Information About This Seller | Ask Bookseller a Question 14.

Published by Belser-Presse,, Stuttgart, (1971)

**
Used
**
**Hardcover**
** Signed **

Quantity Available: 1

From: Rainer Kurz - Antiquariat (D-83080 Oberaudorf, ., Germany)

**Item Description: **Belser-Presse,, Stuttgart, 1971. Ca. 39,5 x 30 cm. Stuttgart, Belser-Presse, 1971. Ca. 39,5 x 30 cm. 79 S., (5) Seiten. Mit 3 Original-Farblithographien von Max Ernst. Orig.-Leinenband im Original-Schuber. Spindler 64,7. Siebenter Druck der Belser-Presse. Exemplar 72/185 (Gesamtauflage 205), im Druckvermerk von Max Ernst signiert. Festvortrag zur öffentlichen Jahressitzung der Bayerischen Akademie der Schönen Künste, München, am 9. Juli 1970. Die Farblithographien zu diesem Text schuf Max Ernst im Frühjahr 1971, sie wurden gedruckt von Pierre Chave in Vence. Handsatz aus 18 Punkt Univers. Orig.-Leinenband im Original-Schuber. Bookseller Inventory # 32719AB

More Information About This Seller | Ask Bookseller a Question 15.

**
Used
**
**
Softcover
**
** First Edition **

Quantity Available: 1

From: Jeremy Norman's historyofscience (Novato, CA, U.S.A.)

**Item Description: **1947. Heisenberg, Werner (1901-76). Research in Germany on the technical application of atomic energy. Offprint from Nature 160 (1947). 10, [1]pp. 212 x 145 mm. Without wrappers as issued. Fine copy. First Edition in English, Offprint Issue. During World War II Heisenberg was one of the principal scientists leading research and development in Germany’s nuclear energy program. At that time the Allies had no idea of how far Germany had progressed in the quest to build a nuclear reactor, but given Germany’s leading role in the advancement of nuclear physics they had every reason to believe that the Nazis were ahead of the game—in fact, the fear of a German "atom bomb" was one of the main reasons behind the establishment of the Manhattan Project. This fear turned out to be groundless: Due to a combination of factors, including Hitler’s dislike of "Jewish science" and the "White Jew" Heisenberg, Germany had fallen far behind the United States in the development of nuclear energy. fter the bombing of Hiroshima Heisenberg became one of the primary crafters of Germany’s official account of its wartime nuclear energy program. In December 1946 he published his first postwar summary of the program in the journal Naturwissenschaften; the present English translation, slightly abridged from the German, appeared in Nature the following August. In the summary Heisenberg argued that Germany’s failure to advance its nuclear program was due both to enormous technical difficulties and to the lack of political and financial support; he also played up his own role in slowing down the project by quashing Nazi officials’ hopes for the imminent development of atomic weapons. "Heisenberg’s self-serving account parallels but overinterprets actual events. He especially did try to maintain scientific control over the [nuclear energy] project. He was also aware of the theoretical possibility of a nuclear explosive by late 1941, he did not demand a crash research and development to build one, and he did seem content to work for the rest of the war on the more modest program of building a reactor. It is difficult to assess his intentions and motives beyond that. But from what we know of his activities and research, there is nothing to support the notion that Heisenberg actually hindered the project in any way to keep an explosive out of Hitler’s hands or even that he himself had that much control of the situation" (Cassidy, Uncertainty: The Life and Science of Werner Heisenberg, p. 510). Bookseller Inventory # 43266

More Information About This Seller | Ask Bookseller a Question 16.

**
Used
**
**Hardcover**
** First Edition **

Quantity Available: 1

From: Lynge & Søn ILAB-LILA (Copenhagen, ., Denmark)

**Item Description: **Berlin, J. Springer, 1932-33. 8vo. Bound together in recent attractive marbled boards. Leather title-label with gilt lettering on front board. Title-pages from the three volumes withbound (small rubberstamp). (11),(9),(12) pp. First edition of Heisenberg's neutron-proton model. Shortly after Chadwick discoverd the neutron in 1932, Heisenberg developed a theory suggesting that atomic nuclei are composed of protons and neutrons, -this introduced the concept of the nuclear exchange force and isotopic spin. (DSB 17: p.398). Bookseller Inventory # 26607

More Information About This Seller | Ask Bookseller a Question 17.

**
Used
**
** Signed **

Quantity Available: 1

From: Max Rambod Autographs (Calabasas, CA, U.S.A.)

**Item Description: **German Physicist. Developed his famous theory of quantum mechanics and was awarded the Nobel Prize for Physics for 1932. He lead the German effort to make an atom bomb. After the war, he claimed he purposely did not want to create the A-bomb on moral grounds, this has been disputed. Still one of the foremost nuclear physicist of the century. Typed Letter Signed, 1 page, dated January 3, 1950. Heisenberg writes: ".I am going to have so many obligations within the upcoming future because of the research council that I did not know if I could accept your invitation. Well, I do believe now that I could come to Istanbul perhaps just before Easter holidays end March - beginning April. Certainly provided that I get permission from the Allied authorities to travel abroad. I would then travel with the airplane from Frankfurt am Main and flight must go over Italy since I do not think getting permission to fly over Russian assigned territories. Therefore, I will apply for visa permit for an airplane route over Italy." Signed "W. Heisenberg". since he needs permission to travel from the Allied Forces which are still occupying parts of Germany, Heisenberg writes this letter after World War II. It is interesting that he assumes that they will never allow him to fly over Russian assigned territory as Russia had just developed the atomic bomb a few months before our letter and thus changed the balance of power in the world. But Heisenberg was still considered such an important nuclear scientist that they would not even let him fly over Easter Europe. Comes with a letter from the brother of the recipient, who requested and received this Heisenberg letter upon the recipient's death. In excellent condition. Bookseller Inventory # 11277

More Information About This Seller | Ask Bookseller a Question 18.

Published by Belser-Presse, Stuttgart (1971)

**
Used
**
**Hardcover**
** First Edition **
** Signed **

Quantity Available: 1

From: Des livres autour (Julien Mannoni) (Paris, ., France)

**Item Description: **Belser-Presse, Stuttgart, 1971. Cartonnage Éditeur. Book Condition: Très bon. Max Ernst (illustrator). Ed. originale. In-folio. Stuttgart, Belser-Presse, 1971. 39,5 x 30 cm, in-folio, 79 pp. - 3 lithographies en couleurs hors texte, cartonnage et étui de l'éditeur en pleine toile bise, pièces de titre. Edition originale de cette conférence donnée à l'Académie bavaroise des Beaux-Arts de Munich le 9 juillet 1970. Texte bilingue allemand / anglais. Tirage à 205 exemplaires. Celui-ci l'un des 20 hors commerce, signé au colophon par Max Ernst. Les lithographies ont été tirées par Pierre Chave à Vence. Etui partiellement bruni, quelques infimes rousseurs à la tranche de gouttière. Signé par l'illustrateur. Bookseller Inventory # 1860

More Information About This Seller | Ask Bookseller a Question 19.

**
Used
**
**Hardcover**

Quantity Available: 1

From: Lynge & Søn ILAB-LILA (Copenhagen, ., Denmark)

**Item Description: **Berlin, Julius Springer, 1929 u. 1930. Bound in 2 contemp. uniform hcloth over marbled boards. A stamp to top of titlepages. Gilt lettering to spine. In: "Zeitschrift für Physik. Herausgegeben von Karl Scheel", 56. und 59. Band. VII,867 pp. u. VII,874 pp. (2 entire volumes offered). Heisenberg & Pauli's paper: pp. 1-61 a. pp. 168-190. Internally clean and fine. First appearance of these two papers of seminal importence as Heisenberg and Pauli here laid the foundation , by using a new method, for the quantum field theory, and gave the "relativistic formulation of quantum electrodynamics in the presence off charges and currents"(Pais). They were the first to attempt a general formulation of quantum electrodynamics by setting up a general scheme for the quantization of fields which they hoped would be applicable to the Maxwell field.In the papers they also introduced what is today called "gauge fixing", which from then on are among the precious tools of field theory."Heisenberg and Pauli thus established the basic structure of QFT which can be found in any introduction to QFT up to the present day" (Stanford Encyclopaedia of Philosophy). Bookseller Inventory # 48182

More Information About This Seller | Ask Bookseller a Question 20.

**
Used
**
**Hardcover**

Quantity Available: 1

From: Lynge & Søn ILAB-LILA (Copenhagen, ., Denmark)

**Item Description: **Berlin, Julius Springer, 1929 u. 1930. Bound in 2 contemp. uniform hcloth. Spine ends a bit worn, cloth broken on fronthinge to vol. 56. (binding not loose). In: "Zeitschrift für Physik. Herausgegeben von Karl Scheel", 56. und 59. Band. VII,867 pp. u. VII,874 pp. (2 entire volumes offered). Heisenberg & Pauli's paper: pp. 1-61 a. pp. 168-190. Internally clean. First appearance of these two papers of seminal importence as Heisenberg and Pauli here laid the foundation, by using a new method, for the quantum field theory, and gave the "relativistic formulation of quantum electrodynamics in the presence off charges and currents"(Pais). They were the first to attempt a general formulation of quantum electrodynamics by setting up a general scheme for the quantization of fields which they hoped would be applicable to the Maxwell field.In the papers they also introduced what is today called "gauge fixing", which from then on are among the precious tools of field theory."Heisenberg and Pauli thus established the basic structure of QFT which can be found in any introduction to QFT up to the present day" (Stanford Encyclopaedia of Philosophy). Bookseller Inventory # 48904

More Information About This Seller | Ask Bookseller a Question 21.

Published by Springer-Verlag, Berlin, Heidelberg, New York (1985)

**
Used
**
**Hardcover**
** First Edition **

Quantity Available: 1

From: Secret Knowledge Books (Tualatin, OR, U.S.A.)

**Item Description: **Springer-Verlag, Berlin, Heidelberg, New York, 1985. Hard Cover. Book Condition: Very Good. Dust Jacket Condition: Very Good. First Edition. 8vo - over 7? - 9? tall. 4 thick oversize volumes, XI, 633 pp; X, 717 pp; X, 700 pp; X, 937 pp. cloth hardcover with dustjacket, Heisenberg's complete published scientific papers, reproduced in facsimile, including several top secret papers on the Nazi nuclear project. Text in German and English. Slight un-evenness of the bookblock of serie A vols 2 and 3. A very good set, not ex-library copy. 8vo - over 7? - 9? tall. Bookseller Inventory # 001583

More Information About This Seller | Ask Bookseller a Question 22.

Published by Julius Springer, Berlin (1926)

**
Used
**
**
Soft cover
**
** First Edition **

Quantity Available: 1

From: Milestones of Science Books (Ritterhude, D, Germany)

**Item Description: **Julius Springer, Berlin, 1926. Soft cover. Book Condition: Very Good. 1st Edition. 8vo - over 7¾ - 9¾" tall. Offprint from: Mathematische Annalen, Vol. 95, Nr. 5. Berlin: Julius Springer, 1926, pp. 683-705. Bound without wrapper; titel page torn at inner margin. Bookseller Inventory # 001727

More Information About This Seller | Ask Bookseller a Question 23.

**
Used
**

Quantity Available: 1

From: Atticus Rare Books (West Branch, IA, U.S.A.)

**Item Description: **FIRST EDITION, FIRST ISSUE OF TWO SEMINAL PAPERS: Heisenberg's groundbreaking contribution to magnetism and to the identification of the quantum mechanical exchange energy. "Heisenberg's masterly contribution in magnetism lies in identifying the quantum mechanical exchange energy, first appearing in the context of chemical bonding and spectroscopy, to be of central importance in explaining ferromagnetism? The question was this: If every atom has an outer cloud of electrons, then how do atoms approach each other to form a chemical bond? It was Heisenberg who showed that the interaction between electrons, called the exchange energy," was the key (ibid., 60). His "exchange interaction" is a force generated solely by the exchange of positions of two totally indistinguishable quantum particles - "a quantum mechanical effect which increases or decreases the expectation value of the energy or distance between two or more identical particles when their wave functions overlap" (Wikipedia). In the early 20th century physicists did not understand ferromagnetism on an atomic basis. "It was Heisenberg's work in the late 1920's that filled this void. To accomplish this, quantum mechanics had to be discovered first? It was indeed in the fitness of things that the quantum dynamics of the electron left an imprint on another area, namely magnetism, which too had to do with the magnetic effects of electron dynamics" (ibid., 58). What Heisenberg began to understand was the connection between ferromagnetism and electron bonding, two areas that most physicists believed were wholly unconnected phenomena. "It was Heisenberg, who saw the connection and established it in two seminal papers, written in 1926 and 1928 [the two papers offered here]" (Chatterjee, "Heisenberg and Ferromagnetism," Resonance, 2004, 63-64). CONDITION & DETAILS: Berlin: Julius Springer. 4to. (9 x 6.5 inches; 225 x 163mm). Two full volumes. Zeitschrift für Physik Volumes 39 and 49. Handsomely bound in black cloth over marbled paper boards; library labels removed with slight ghosting visible. Very minor rubbing at the edges on Volume 39. Both tightly and solidly bound. Near pristine throughout the interior. Bookseller Inventory # 217

More Information About This Seller | Ask Bookseller a Question 24.

**
Used
**

Quantity Available: 1

From: Atticus Rare Books (West Branch, IA, U.S.A.)

**Item Description: **First editions of the three papers in which heisenberg formulated the final mathematical model of the atom -- the neutron-proton model for the atomic nucleus - and the papers in which he introduced the concept of nucleon isotropic spin (later named "isospin"). The books bear the stamp of Friedrich Hermann Hund, a German physicist well-known for his work on atoms and molecules. "After Chadwick had discovered the neutron, Heisenberg was the first to state that this discovery eliminated the need for assuming the presence of electrons in the nucleus of an atom" (Pais). Chadwick's discovery "made it possible to change the relation between nuclear physics and the domain of unsolved problems. A substantial number of nuclear problems now became solvable by ordinary quantum mechanics" (ibid). Still, "once it was accepted that the nucleus was composed of protons and neutrons and that quantum mechanics could be applied to it, the question remained which force acted between its constituents. Heisenberg assumed it to be an exchange force, i.e., a force based on the symmetry properties of a quantum-mechanical wave function" (Brandt, The Harvest of the Century, pp. 223-224). Only a few months after Chadwick's discovery, Heisenberg used Chadwick's neutron to construct the first quantum mechanical nuclear model. The main mechanism he proposed was an exchange force produced by protons and neutrons passing electrons around like basketball players tossing a ball" (Peacock, The Quantum Revolution, 94). Heisenberg postulated that the proton and neutron were two states of the same particle, the nucleon, differing only in isospin. In his theory, the nuclear force conserved isospin, which accounted for the similarities between protons and neutrons. Other forces, such as electromagnetism, broke isospin symmetry, which explained the nucleons' differences. Heisenberg was wrong about the nature of the proton and neutron, but was correct about the importance of isospin in the weak nuclear force. Heisenberg's theory was "quantitatively insufficient to explain nuclear forces. [and] the riddle of nuclear forces stayed a subject of research for decades to come. The lasting value of Heisenberg's approach lies in the revelation of inner symmetries of elementary particles and of quantum numbers associated with these symmetries. The discovery of further symmetries of this type would lead first to a classification of particles and then to an understanding of the forces between them" (Brandt, 226). CONDITION & DETAILS: In: Zeitschrift für Physik 77 (1932), 78 (1932), 80 (1933). Berlin: Julius Springer. 8vo. (9 x 6.5; 225 x 163mm). Three full volumes. The books bear the stamp (on ffp) of Friedrich Hermann Hund, a physicist well-known for his work on atoms and molecules. Friedrich Hermann Hund "was a German physicist from Karlsruhe known for his work on atoms and molecules. Hund worked with such prestigious physicists as Schrödinger, Dirac, Heisenberg, Max Born, and Walter Bothe. He published more than 250 papers and essays in total. Hund made pivotal contributions to quantum theory - especially concerning the structure of the atom and of molecular spectra" (Wikipedia). The set is also ex-libris with very, very slight 'ghosting' from the removal of spine labels. Small stamp appears on the rear of the title pages. Bound in black cloth over marbled paper hardboard. Very slightly rubbed at the edges. Tightly bound and very clean. The interior is clean and bright. Very good + condition. Bookseller Inventory # 11

More Information About This Seller | Ask Bookseller a Question 25.

Published by Zeitschrift fur physik, 1 2-1933, In: (1933)

**
Used
**
**Hardcover**
** First Edition **

Quantity Available: 1

From: Jeff Weber Rare Books, ABAA (Los Angeles, CA, U.S.A.)

**Item Description: **Zeitschrift fur physik, 1 2-1933, In:, 1933. hardcover. 1 FIRST EDITION of the final mathematical model of the atom. After Chadwick had discovered the neutron, Heisenberg was the FIRST TO STATE THAT THIS DISCOVERY ELIMINATED THE NEED FOR ASSUMING THE PRESENCE OF ELECTRONS IN THE NUCLEUS OF AN ATOM. Bohr and Heisenberg received word of Chadwick's discovery of the neutron in the middle of March 1932. Within three months of hearing of the neutron, Heisenberg succeeded in using it as the basis of a semiquantitative explanation of the composition and stability of nuclei. The discovery of the neutron made it possible to change the relation between nuclear physics and the domain of unsolved problems. A substantial number of nuclear problems now became solvable by ordinary quantum mechanics. The achievement of Heisenberg was to see this possibility and find a way to give it formal expression. "Three papers by Heisenberg completed in the latter half of 1932 mark the transition to the modern view on nuclear forces. These articles, important though they are, must not be considered as a clean break with the past, however. Heisenberg's nuclear theory is a hybrid of the old and the new. It has the virtue of being based on the proton-neutron model of the nucleus, but the drawback of a proton-electron model for the neutron. The key to understanding Heisenberg's 1932 papers is simply this: at that time he sided with Bohr." Pais, Inward bound. Bromberg, The impact of the neutron; Hahn, Autobiography, p. 272; Pais, Inward bound, p. 413. Three volumes. 8vo. 77, (1932), pp. 1-11; 78 (1932), pp. 156-64; 80 (1933), pp. 587-596. Navy cloth, gilt stamped spine. Ex library Carnegie Institution of Washington Mount Wilson Observatory with call number gilt stamped on spine and library blind-stamp on front free end paper. Clean copy, handsomely bound; covers lightly freckled, else fine. RARE. Bookseller Inventory # S0439

More Information About This Seller | Ask Bookseller a Question 26.

**
Used
**
**Hardcover**

Quantity Available: 1

From: Michael R. Thompson Books, A.B.A.A. (Los Angeles, CA, U.S.A.)

**Item Description: **All attempts to explain the helium spectra using the old quantum mechanics of Bohr and Sommerfeld had failed. Incorporating both Pauli's exclusion principle and spin into Schršdinger's two-electron wave function, Heisenberg was finally able to derive a good approximation to the emission spectrum of helium. This result marks the second great triumph of wave mechanics after Schršdinger;s treatment of hydrogen. In the course of this derivation, Heisenberg hit upon a new insight and established the principle of "exchange interaction"Ña force generated solely by the exchange of positions of two totally indistinguishable quantum particlesÑwhich turned out to have much wider implications in both solid-state and nuclear physics. Van Vleck won the 1977 Nobel Prize in physics for his "fundamental theoretical investigations of the electronic structure of magnetic and disordered systems." Octavo. Contemporary blue buckram, with title, issue, and year in gilt on spine. Very good. With the pencil signature of Nobel Laureate John H. Van Vleck. Bookseller Inventory # 7984

More Information About This Seller | Ask Bookseller a Question 27.

Published by Springer-verlag (1989)

ISBN 10: 0387138471 ISBN 13: 9780387138473

**
Used
**
**Hardcover**
** First Edition **

Quantity Available: 1

From: Delhi Book Store (new delhi, Del, India)

**Item Description: **Springer-verlag, 1989. Hardcover. Book Condition: Like New. 1st. Bookseller Inventory # 0387138471

More Information About This Seller | Ask Bookseller a Question 28.

Published by Berlin: Julius Springer, 1928. (1928)

**
Used
**
** First Edition **

Quantity Available: 1

From: Michael R. Thompson Books, A.B.A.A. (Los Angeles, CA, U.S.A.)

**Item Description: **Berlin: Julius Springer, 1928., 1928. Heisenberg's paper resolved the puzzle of magnetism in iron, which he developed independently of the quantum mechanical explanation of the nature of ferromagnetism offered that year by Yakov Frenkel (DSB, V, p. 160). First edition. Bookseller Inventory # 7985

More Information About This Seller | Ask Bookseller a Question 29.

**
Used
**

Quantity Available: 1

From: Vangsgaards Antikvariat (DK-1171 Copenhagen K, ., Denmark)

**Item Description: **Springer-Verlag, Berlin 1943. Mit 37 abbildungen. 173 pages. Orig. cover. Very good, with slight wear to the spine and a bit of staining to the cover. * With Niels Bohr's personal stamp to the halftitle leaf.** Highly interesting association copy: This Festschrift was made for Arnold Sommerfeld [1868-1951] - one of the grand old men of atomic physics - for his 75 years birthday on 5th December 1943. In October 1943, Niels Bohr had fled the Nazi regime from Denmark to the United States, so he most likely received it after the war. Heisenberg was at this time working for the Nazi regime and was sent to Copenhagen to search through Niels Bohr's institute to find information - possibly on building a nuclear bomb. In this way he could convince the occupation forces that they could safely allow the Institute to reopen. Bookseller Inventory # 423936

More Information About This Seller | Ask Bookseller a Question 30.

Condition

- All Conditions
- New Books (187)
- Used Books (944)

Binding

- All Bindings
- Hardcover (317)
- Softcover (439)

Collectible Attributes

- First Edition (169)
- Signed Copy (12)
- Dust Jacket (118)
- Seller-Supplied Images (127)
- Not Printed On Demand

Free Shipping

- Free US Shipping (83)

Bookseller Location

- All Locations

Bookseller Rating