Items related to Multiresolution Signal Decomposition: Transforms, Subbands,...

Multiresolution Signal Decomposition: Transforms, Subbands, and Wavelets - Hardcover

 
9780120471416: Multiresolution Signal Decomposition: Transforms, Subbands, and Wavelets

Synopsis

The uniqueness of this book is that it covers such important aspects of modern signal processing as block transforms from subband filter banks and wavelet transforms from a common unifying standpoint, thus demonstrating the commonality among these decomposition techniques. In addition, it covers such "hot" areas as signal compression and coding, including particular decomposition techniques and tables listing coefficients of subband and wavelet filters and other important properties.

The field of this book (Electrical Engineering/Computer Science) is currently booming, which is, of course, evident from the sales of the previous edition. Since the first edition came out there has been much development, especially as far as the applications. Thus, the second edition addresses new developments in applications-related chapters, especially in chapter 4 "Filterbrook Families: Design and Performance," which is greatly expanded.

  • Unified and coherent treatment of orthogonal transforms, subbands, and wavelets
  • Coverage of emerging applications of orthogonal transforms in digital communications and multimedia
  • Duality between analysis and synthesis filter banks for spectral decomposition and synthesis and analysis transmultiplexer structures
  • Time-frequency focus on orthogonal decomposition techniques with applications to FDMA, TDMA, and CDMA

"synopsis" may belong to another edition of this title.

About the Authors

Ali N. Akansu received the BS degree from the Technical University of Istanbul, Turkey, in 1980, the MS and Ph.D degrees from the Polytechnic University, Brooklyn, New York in 1983 and 1987, respectively, all in Electrical Engineering. He has been with the Electrical & Computer Engineering Department of the New Jersey Institute of Technology since 1987. He was an academic visitor at David Sarnoff Research Center, at IBM T.J. Watson Research Center, and at GEC-Marconi Electronic Systems Corp. He was a Visiting Professor at Courant Institute of Mathematical Sciences of the New York University performed research on Quantitative Finance. He serves as a consultant to the industry. His current research and professional interests include theory of signals and transforms, financial engineering & electronic trading, and high performance DSP (FPGA & GPU computing).

Richard A. Haddad received the B.E.E, M.E.E, and Ph.D. degrees in 1956, 1958, and 1962 respectively from the Polytechnic Institute of Brooklyn. He had been on the Electrical Engineering Faculty of Polytechnic University from 1961 to 1995. During his tenure there, he had served in various capacities. From 1981 to 1987, he was Associate Dean and then Director of the Westchester Graduate Center. During leaves of absence, he has served as a Member of the Technical Staff at Bell Telephone Laboratories, Whippany, N.J. and as first Director of the Engineering Division at the Institut National d'Electricite et d'Electronique, Boumerdes, Algeria. He has also lectured and consulted in signal processing at universities in Italy, People's Republic of China.
Presently he is Professor and Chair, Department of Electrical and Computer Engineering, New Jersey Institute of Technology. New Jersey.
He is a senior memeber of IEEE and also an elected member of Eta Kappa Nu, Tau Beta Pi, and Sigma Xi, and the New York Academy of Sciences.

From the Back Cover

Multiresolution Signal Composition: Transforms, Subbands, and Wavelets, Second Edition is the first book to give a unified and coherent exposition of orthogonal signal decomposition techniques. Advances in the field of electrical engineering/computer science have occurred since the first edition was published in 1992. This second edition addresses new developments in applications-related chapters, especially in Chapter 4, "Filterbrook Families: Design and Performance," which is greatly expanded. Also included are the most recent applications of orthogonal transforms in digital communications and multimedia.

Multiresolution Signal Composition: Transforms, Subbands, and Wavelets, Second Edition is intended for graduate students and research and development practitioners engaged in signal processing applications in voice and image processing, multimedia, and telecommunications.

Key Features
· Unified and coherent treatment of orthogonal transforms, subbands, and wavelets
· Coverage of emerging applications of orthogonal transforms in digital communications and multimedia
· Duality between analysis and synthesis filter banks for spectral decomposition and synthesis and analysis transmultiplexer structures
· Time-frequency focus on orthogonal decomposition techniques with applications to FDMA, TDMA, and CDMA





Excerpt. © Reprinted by permission. All rights reserved.

Chapter 1: Introduction

1.1 Introduction

In the first edition of this book, published in 1992, we stated our goals as threefold:
(1) To present orthonormal signal decomposition techniques-transforms, subbands, and wavelets-from a unified framework and point of view.

(2) To develop the interrelationships among decomposition methods in both time and frequency domains and to define common features.
(3) To evaluate and critique proposed decomposition strategies from a compression coding standpoint using measures appropriate to image processing.

The emphasis then was signal coding in an analysis/synthesis structure or codec. As the field matured and new insights were gained, we expanded our vistas to communications systems and other applications where objectives other than compression are vital - as for example, interference excision in CDMA spread spectrum systems. We can also represent certain communications systems such as TDMA, FDMA, and CDMA as synthesis/ analysis structures, i.e., the conceptual dual of the compression codec. This duality enables one to view all these systems from one unified framework.

The Fourier transform and its extensions have historically been the prime vehicle for signal analysis and representation. Since the early 1970s, block transforms with real basis functions, particularly the discrete cosine transform (DCT), have been studied extensively for transform coding applications. The availability of simple fast transform algorithms and good signal coding performance made the DCT the standard signal decomposition technique, particularly for image and video. The international standard image-video coding algorithms, i.e., CCITT H.261, JPEG, and MPEG, all employ DCT-based transform coding.

Since the recent research activities in signal decomposition are basically driven by visual signal processing and coding applications, the properties of the human visual system (HVS) are examined and incorporated in the signal decomposition step. It has been reported that the HVS inherently performs multiresolution signal processing. This finding triggered significant interest in multiresolution signal decomposition and its mathematical foundations in multirate signal processing theory. The multiresolution signal analysis concept also fits a wide spectrum of visual signal processing and visual communications applications. Lower, i.e., coarser, resolution versions of an image frame or video sequence are often sufficient in many instances. Progressive improvement of the signal quality in visual applications, from coarse to finer resolution, has many uses in computer vision, visual communications, and related fields.

The recognition that multiresolution signal decomposition is a by-product of multirate subband filter banks generated significant interest in the design of better performing filter banks for visual signal processing applications.

The wavelet transform with a capability for variable time-frequency resolution has been promoted as an elegant multiresolution signal processing tool. It was shown that this decomposition technique is strongly linked to subband decomposition. This linkage stimulated additional interest in subband filter banks, since they serve as the only vehicle for fast orthonormal wavelet transform algorithms and wavelet transform basis design.

1.2 Why Signal Decomposition?

The uneven distribution of signal energy in the frequency domain has made signal decomposition an important practical problem. Rate-distortion theory shows that the uneven spectral nature of real-world signals can provide the basis for source compression techniques. The basic concept here is to divide the signal spectrum into its subspectra or subbands, and then to treat those subspectra individually for the purpose at hand. From a signal coding standpoint, it can be appreciated that subspectra with more energy content deserve higher priority or weight for further processing. For example, a slowly varying signal will have predominantly low-frequency components. Therefore, the low-pass subbands contain most of its total energy. If one discards the high-pass analysis subbands and reconstructs the signal, it is expected that very little or negligible reconstruction error occurs after this analysis-synthesis operation.

The decomposition of the signal spectrum into subbands provides the mathematical basis for two important and desirable features in signal analysis and processing. First, the monitoring of signal energy components within the subbands or subspectra is possible. The subband signals can then be ranked and processed independently. A common use of this feature is in the spectral shaping of quantization noise in signal coding applications. By bit allocation we can allow different levels of quantization error in different subbands. Second, the subband decomposition of the signal spectrum leads naturally to multiresolution signal decomposition via multirate signal processing in accordance with the Nyquist sampling theorem.

Apart from coding/compression considerations, signal decomposition into subbands permits us to investigate the subbands for contraband signals, such as bandlimited or single tone interference. We have also learned to think more globally to the point of signal decomposition in a composite time-frequency domain, rather than in frequency subbands as such. This expansive way of thinking leads naturally to the concept of wavelet packets (subband trees), and to the block transform packets introduced in this text.

1.3 Decompositions: Transforms, Subbands, and Wavelets

The signal decomposition (and reconstruction) techniques developed in this book have three salient characteristics:

(1) Orthonormality. As we shall see, the block transforms will be square unitary matrices, i.e., the rows of the transformation matrix will be orthogonal to each other; the subband filter banks will be paraunitary, a special kind of orthonormality, and the wavelets will be orthonormal.
(2) Perfect reconstruction (PR). This means that, in the absence of encoding, quantization, and transmission errors, the reconstructed signal can be reassembled perfectly at the receiver.
(3) Critical sampling. This implies that the signal is subsampled at a minimum possible rate consistent with the applicable Nyquist theorem. From a practical standpoint, this means that if the original signal has a data rate of fs samples or pixels per second, the sum of the transmission rates out of all the subbands is also fs.

The aforementioned are the prime ingredients of the decomposition techniques. However, we also briefly present a few other decomposition methods for contrast or historical perspective. The oversampled Laplacian pyramid, biorthogonal filter banks, and non-PR filter banks are examples of these, which we introduce for didactic value.

"About this title" may belong to another edition of this title.

Buy Used

Condition: Very Good
Hardcover, [xvi], 499 pages. Very...
View this item

US$ 5.50 shipping within U.S.A.

Destination, rates & speeds

Other Popular Editions of the Same Title

9781483299747: Multiresolution Signal Decomposition, Second Edition: Transforms, Subbands, and Wavelets

Featured Edition

ISBN 10:  1483299740 ISBN 13:  9781483299747
Publisher: Academic Press, 2000
Softcover

Search results for Multiresolution Signal Decomposition: Transforms, Subbands,...

Stock Image

Akansu, Ali N.; Haddad, Richard A.
Published by Academic Press, San Diego, CA, 2001
ISBN 10: 0120471418 ISBN 13: 9780120471416
Used Hardcover

Seller: Florida Mountain Book Co., Datil, NM, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: Very Good. Hardcover, [xvi], 499 pages. Very Good condition. Second edition. Size 9.5"x7.5". "The uniqueness of this book is that it covers such important aspects of modern signal processing as block transforms from subband filter banks and wavelet transforms from a common unifying standpoint, thus demonstrating the commonality among these decomposition techniques. In addition, it covers such "hot" areas as signal compression and coding, including particular decomposition techniques and tables listing coefficients of subband and wavelet filters and other important properties . . . . this second edition addresses new developments in applications-related chapters, especially in chapter 4 "Filterbrook Families: Design and Performance," which is greatly expanded." Book has moderate exterior shelfwear, else Near Fine, clean and unmarked. Seller Inventory # 009582

Contact seller

Buy Used

US$ 67.95
Convert currency
Shipping: US$ 5.50
Within U.S.A.
Destination, rates & speeds

Quantity: 1 available

Add to basket

Seller Image

Akansu, Ali N.
Published by Academic Press, 2000
ISBN 10: 0120471418 ISBN 13: 9780120471416
Used Hardcover

Seller: Libreria sottomarina - Studio Bibliografico, ROMA, RM, Italy

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

rilegato. Condition: Ottimo (Fine). Book. Seller Inventory # ca01anjTEK

Contact seller

Buy Used

US$ 69.58
Convert currency
Shipping: US$ 48.92
From Italy to U.S.A.
Destination, rates & speeds

Quantity: 1 available

Add to basket