Items related to Calculus Matrix Version

David E. Penney Calculus Matrix Version ISBN 13: 9780130479563

Calculus Matrix Version - Softcover

 
9780130479563: Calculus Matrix Version
View all copies of this ISBN edition:
 
 
The Matrix version combines traditional mainstream calculus with the most flexible approach to new ideas and calculator/computer technology. It contains superb problem sets and a fresh conceptual emphasis flavored by new technological possibilities. This book contains an entire chapter on calculus of transcendental functions, a new chapter on matrices and eigenvalues, and increased coverage of differential equations. For professionals who need to brush up on their calculus skills.

"synopsis" may belong to another edition of this title.

About the Author:

C. Henry Edwards is emeritus professor of mathematics at the University of Georgia. He earned his Ph.D. at the University of Tennessee in 1960, and recently retired after 40 yearsbf classroom teaching (including calculus or differential eguations almost every term) at the universities of Tennessee, Wisconsin, and Georgia, with a brief interlude at the Institute for Advanced Study (Princeton) as an Alfred P. Sloan Research Fellow. He has received numerous teaching awards, including the University of Georgia's honoratus medal in 1983 (for sustained excellence in honors teaching), its Josiah Meigs award in 1991 (the institution's highest award for teaching), and the 1997 statewide Georgia Regents award for research university faculty teaching excellence. His scholarly career has ranged from research and dissertation direction in topology to the history of mathematics to computing and technology in the teaching and applications of mathematics. In addition to being author or co-author of calculus, advanced calculus, linear algebra, and differential equations textbooks, he is well-known to calculus instructors as author of The Historical Development of the Calculus (Springer-Verlag, 1979). During the 1990s he served as a principal investigator on three NSF-supported projects: (1) A school mathematics project including Maple for beginning algebra students, (2) A Calculus-with-Mathematica program, and (3) A MATLAB-based computer lab project for numerical analysis and differential equations students.

David E. Penney, University of Georgia, completed his Ph.D. at Tulane University in 1965 (under the direction of Prof. L. Bruce Treybig) while teaching at the University of New Orleans. Earlier he had worked in experimental biophysics at Tulane University and the Veteran's Administration Hospital in New Orleans under the direction of Robert Dixon McAfee, where Dr. McAfee's research team's primary focus was on the active transport of sodium ions by biological membranes. Penney's primary contribution here was the development of a mathematical model (using simultaneous ordinary differential equations) for the metabolic phenomena regulating such transport, with potential future applications in kidney physiology, management of hypertension, and treatment of congestive heart failure. He also designed and constructed servomechanisms,for the accurate monitoring of ion transport, a phenomenon involving the measurement of potentials in microvolts at impedances of millions of megohms. Penney began teaching calculus at Tulane in 1957 and taught that course almost every term with enthusiasm and distinction until his retirement at the end of the last millennium. During his tenure at the University of Georgia he received numerous University-wide teaching awards as well as directing several doctoral dissertations and seven undergraduate research projects. He is the author of research papers in number theory and topology and is the author or co-author of textbooks on calculus, computer programming, differential equations, linear algebra, and liberal arts mathematics.

Excerpt. © Reprinted by permission. All rights reserved.:

Contemporary calculus instructors and students face traditional challenges as well as new ones that result from changes in the role and practice of mathematics by scientists and engineers in the world at large. As a consequence, this sixth edition of our calculus textbook is its most extensive revision since the first edition appeared in 1982.

One chapter of the fifth edition has been replaced in the table of contents by two entirely new ones; most of the remaining chapters have been extensively rewritten. Nearly 160 of the book's over 800 worked examples are new for this edition and the 1850 figures in the text include 250 new computer-generated graphics. Almost 800 of its 7250 problems are new, and these are augmented by over 330 new conceptual discussion questions that now precede the problem sets. Moreover, almost 1100 new true/false questions are included in the Study Guides on the new CD-ROM that accompanies this edition. In summary, almost 2200 of these 8650-plus problems and questions are new, and the text discussion and explanations have undergone corresponding alteration and improvement.

PRINCIPAL NEW FEATURES

The current revision of the text features

  • More unified treatment of transcendental functions in Semester I,
  • Differential equations and applications in Semester II, and
  • Linear systems and matrices in Semester III.

The new chapter on differential equations now appears immediately after Chapter 8 on techniques of integration. It includes both direction fields and Eider's method together with the more elementary symbolic methods (which exploit techniques from Chapter 8) and interesting applications of both first- and second-order equations. Chapter 11 (Infinite Series) now ends with a new section on power series solutions of differential equations, thus bringing full circle a unifying focus of second-semester calculus on elementary differential equations.

Linear systems and matrices, ending with an elementary treatment of eigenvalues and eigenvectors, are now introduced in Chapter 12. The subsequent coverage of multivariable calculus now integrates matrix methods and terminology with the traditional notation and approach—including (for instance) introduction and extensive application of the chain rule in matrix-product form.

"About this title" may belong to another edition of this title.

  • PublisherAddison Wesley Longman
  • ISBN 10 013047956X
  • ISBN 13 9780130479563
  • BindingPaperback
  • Edition number6

(No Available Copies)

Search Books:



Create a Want

If you know the book but cannot find it on AbeBooks, we can automatically search for it on your behalf as new inventory is added. If it is added to AbeBooks by one of our member booksellers, we will notify you!

Create a Want

Top Search Results from the AbeBooks Marketplace