Digital electronics is the foundation of computers and microprocessor-based systems found in automobiles, industrial control systems, and home entertainment systems. Technological advances made in the past 25 years have provided us with integrated circuits and CPLDs (Complex Programmable Logic Devices) that can perform complex tasks with a minimum amount oh abstract theory and complicated circuitry, bringing us to an exciting place in this important field. An understanding of digital electronics not only provides the prerequisite background (or further studies in microprocessors and microcomputer interfacing, it also (asters the job skills that are needed to open doors to a myriad of technical careers involving computers and microprocessors. This best-selling text, Digital Electronics: A Practical Approach, Sixth Edition, covers the fundamentals of digital electronics and is intended for students of technology, computer science, and engineering programs. As its name implies, the book approaches digital electronics from a practical perspective, enabling students who are taking a one- or two-semester course to learn the actual skills required to design and troubleshoot digital circuitry that they will see on the job. Stressing the importance of analytical reasoning skills and basic digital design using industry-standard integrated circuits and CPLDs, the book is written in a style that is both engaging and easy to read and understand, heavily supported by a multitude of review questions, problem sets, examples, illustrations, and troubleshooting applications. In addition, an extensive package of ancillary material is available to aid in the teaching ,and learning process, including: * Two CD-ROMs packaged with each copy of this text, containing: -- Electronics Workbench(R)/MultiSIM(R) Circuit. data files -- Solutions to in-text CPLD examples using Xilinx and Altera ,SM Texas Instruments Data Sheets * Instructor's Resource Manual (ISBN 0-13-092293-5) containing: -- Solutions and answers to in-text problems -- Solutions to Standard Logic Laboratory Manual -- Test Item File * PowerPaint(R) transparencies (ISBN 0-13-092294-3) * Three Laboratory Manuals (Standard Logic) (ISBN 0-13-092291-9) -- A Troubleshooting Approach, by Michael Wiesner and Vance Venable (Altera ,SM CPLDs) (ISBN 0-13-084256-7) -- Digital Logic Simulation and CPLD Programming, by Steve Waterman (Xilinx CPLDs) (ISBN 0-l3-088192-9) -- Digital Laboratory Experiments, by James Stewart and Chao-Ying Wang * PH Test Manager (ISBN 0-13-093417-8) * Instructor's Supplement CD (ISBN 0-13-092541-1) * CourseCompass (ISBN 0-13-094415-7) * WebCT (ISBN 0-13-062319-9) * Blackboard (ISBN 0-13-062318-0) * Companion Website: http://www. prenhall.com/kleitz

*"synopsis" may belong to another edition of this title.*

A new full-color edition of this widely-adopted best-seller...one that emphasizes analytical reasoning skills and basic digital design using industry-standard ICs. Students learn the practical skills they need to design and troubleshoot the digital circuitry they will face on the job. The author uses actual industry integrated circuits to demonstrate circuit operations, and a solid step-by-step progression is made from fundamentals through more complicated topics. Emphasis is on the basics of circuit design, so that students, knowing the foundational building blocks, can then teach themselves new technology as it appears. Numerous digital system design applications and troubleshooting exercises are provided, along with ample illustrations, examples, and review questions. Additionally, laboratory exercises can be created by having students build, test, debug, and analyze the operation of any of the text's examples.

**To the Instructor**

It is time to reevaluate the way that digital electronics is taught. At first, digital electronics was a theoretical science, but now it is a down-to-earth, workable technology that can be taught using a practical approach.

*Digital Electronics: A Practical Approach, Sixth Edition,* emphasizes analytical reasoning and basic digital design using the standard integrated circuits (ICs) that are used in industry today. Throughout the text, actual ICs are used, and reference is made to the appropriate manufacturers' data sheets. Because of this approach, students become proficient at using the terminology and timing diagrams that are the standard in manufacturers' data manuals and industrial settings.

I have strived to make the text easy to read and understand, so that motivated students can teach themselves topics that require extra work without the constant attention of the instructor. Several digital system design applications and troubleshooting exercises are included. Also, there are ample illustrations, examples, and review questions to help students reach a point where they can reason out the end-of-chapter problems on their own. After all, that is the main goal of this book—to help students to think and reason on their own.

This book can be used for a one- or two-semester course in digital electronics and is intended for students of technology, computer science, or engineering programs. Although not mandatory, it is helpful if students using this text have an understanding of, or are concurrently enrolled in, a basic electricity course. A laboratory component to provide hands-on reinforcement of the material presented in this book can be very helpful. Laboratory exercises can be developed by building, testing, debugging, and analyzing the operation of any of the examples or system design applications that are provided within the text.

**A Practical Approach to Learning Digital**

What is it that students really need to learn to function in the modern digital electronics field? That is the question that I ask myself every time I teach a digital course from my textbook or visit an electronics facility. The answer is that students need to learn the practical skills required to design and troubleshoot actual digital circuitry that they will see on the job. *Practical* means that the circuits that they study must be made up of *actual* ICs and the specifications that they learn about are taken from *actual* manufacturers' data sheets. It also means that the students must be taught how to think on their own and how to reason out new concepts as they come up on the job. They must also be able to teach themselves new material as new developments in the field arise.

To address these needs, this book makes a strong effort to use actual ICs and data sheets in its examples. The text covers the basic fundamentals of any circuit design so that the students, knowing the basic building blocks, can teach themselves the newest technology when faced with it on the job. Also, material has been added to help reduce the anxiety that students feel when they first start a new job and are faced with schematics of large systems to analyze. To get students used to these large-scale circuit diagrams, I have included four "real-world" schematics that contain several of the ICs and circuits described in this text. By working the Schematic Interpretation problems at the end of each chapter and referencing the schematics in Appendix G, students are forced to dig into the complex diagrams a bit deeper in each successive chapter, so that by the end of the text, they will have covered almost all of the complete circuits.

**Problem Sets**

A key part of learning any technical subject matter is for the student to have practice solving problems of varying difficulty. The problems at the end of each chapter are grouped together by section number. Within each section are several basic problems designed to get the student to solve a problem using the fundamental information presented in the chapter. In addition to the basic problems, there are four other problem types:

**D** (Design) Problems designated with the letter *D* ask the students to modify an existing circuit or to design an original circuit to perform a specific task. This type of exercise stimulates creative thinking and instills a feeling of accomplishment on successful completion of a circuit design.

**T** (Troubleshooting) Problems designated with the letter *T* present the student with a malfunctioning circuit to be diagnosed or ask for a procedure to follow to test for proper circuit operation. This develops the student's analytical skills and prepares him or her for troubleshooting tasks that would typically be faced on the job.

**C** (Challenging) Problems designated with the letter *C* are the most challenging to solve. They require a thorough understanding of the material covered and go a step beyond by requiring the student to develop some of his or her own strategies to solve a problem that is different from the examples presented in the chapter. This also expands the student's analytical skills and develops critical thinking techniques.

**S** (Schematic interpretation) Problems designated with the letter *S* are designed to give the student experience interpreting circuits and ICs in complete system schematic diagrams. The student is asked to identify certain components in the diagram, describe their operation, modify circuit elements, and design new circuit interfaces. This gives the student experience working with real-world, large-scale schematics like the ones that he or she will see on the job.

**Electronics Workbench®/MultiSIM® Exercises**

Several EWB exercises are included at the end of each chapter. One of the CDs included in the back of this textbook contains all of the circuit files and instructions needed to solve each problem. There are three types of problems: (1) *circuit interaction problems* require the student to change input values and take measurements at the outputs to verify circuit operation, (2) *design problems* require the student to design, or modify, a circuit to perform a particular task, and (3) *troubleshooting problems* require the student to find and fix the fault that exists in the circuit that is given.

**Complex Programmable Logic Device Problems**

Complex Programmable Logic Device (CPLD) problems are included at the end of several chapters. Designing digital logic with CPLDs is becoming very popular in situations where high complexity and programmability are important. The CPLD problems use manufacturers' software to solve designs that were previously implemented using 7400-series ICs. Examples of circuit design are provided within the chapters, and Appendix E contains tutorials for using the software.

The examples and problems used in the text are based on both **Altera**™,SM and **Xilinx**™ products. The CPLD design software for their products can be downloaded from their websites (listed in Appendix A).

**Margin Annotation Icons**

Several annotations are given in the page margins throughout the text. These are intended to highlight particular points that were made on the page. They can be used as the catalyst to develop a rapport between the instructor and the students and to initiate team discussions among the students. Four different icons are used to distinguish between the annotations.

** Common Misconception:** These annotations point out areas of digital electronics that have typically been stumbling blocks for students and need careful attention. Pointing out these potential problem areas helps students avoid making that mistake.

** Team Discussion:** These annotations are questions that tend to initiate a discussion about a particular topic. The instructor can use them as means to develop cooperative learning by encouraging student interaction.

** Helpful Hint:** These annotations offer suggestions for circuit analysis and highlight critical topics presented in that area of the text. Students use these tips to gain insights regarding important concepts.

** Inside Your PC:** These annotations are used to illustrate practical applications of the theory in that section as it is applied inside of a modern PC. This will help the student to understand many of the terms used to describe the features that define the capability of a PC.

**Teaching and Learning Digital Electronics**

I would like to share with you some teaching strategies that I've developed from using this text for the past 14 years. Needless to say, students have become very excited about learning digital electronics because of the increasing popularity of the digital computer and the expanding job opportunities for digital technicians and engineers. Students are also attracted to the subject area because of the availability of inexpensive digital ICs, which have enabled them to construct useful digital circuits in the lab or at home at a minimal cost.

** Student Projects:** I always encourage the students to build some of the fundamental building-block circuits that are presented in this text. The circuits that I recommend are the S-V power supply in Figure 11-39, the 60-Hz pulse generator in Figure 11-40, the cross-NAND switch debouncer in Figure 11-37, and the seven-segment LED display in Figure 12-42. Having these circuits provides a starting point for the student to test many of the other circuits in the text at his or her own pace, at home.

** Team Discussions:** As early as possible in the course, I take advantage of the Team Discussion margin annotations. These are cooperative learning exercises where the students are allowed to form teams, discuss the problem, and present their conclusion to the class. These activities give them a sense of team cooperation and create a student network connection that will carry on throughout the rest of their studies.

** Laboratory Component:** Giving the students the opportunity for hands-on laboratory experience is a very useful component of any digital course. An important feature of this text is that there is enough information given for any of the circuits so that they can be built and tested in the lab and that you can be certain they will give the same response as shown in the text.

** Circuit Illustrations:** Almost every topic in the text has an illustration associated with it. Because of the extensive art program, I normally lecture directly from illustration to illustration. To do this, I have an overhead transparency made of every figure in the text. All figures and tables in the text are available in PowerPoint® format for instructors adopting the text.

** Testing:** Rather than let a long period of time elapse between tests, I try to give a half-hour quiz each week. Besides the daily homework, this forces the students to study at least once per week. I also believe that it is appropriate to allow them to have a formula sheet for the quiz or test (along with a TTL or CMOS databook). This sheet can have anything they want to write on it. Making up the formula sheet is a good way for them to study and eliminates a lot of routine memorization that they would not normally have to do on the job.

** The Learning Process:** The student's knowledge is generally developed by learning the theory and the tools required to understand a particular topic, working through the examples provided, answering the review questions at the end of each section, and finally, solving the problems at the end of the chapter. I always encourage the students to rework the solutions given in the examples without looking at the solutions in the book until they are done. This gives them extra practice and a secure feeling of knowing the detailed solution is right there at their disposal.

**Chapter Organization**

Basically, the text can be divided into two halves: Chapters 1 to 8 cover basic digital logic and combinational logic, and Chapters 9 to 17 cover sequential logic and digital systems. *Chapters 1 and 2* provide the procedures for converting between the various number systems and introduce the student to the electronic signals and switches used in digital circuitry. *Chapter 3* covers the basic logic gates and introduces the student to timing analysis and troubleshooting techniques. *Chapter 4* explains how to implement designs using CPLDs. *Chapter 5* shows how several of the basic gates can be connected together to form combinational logic. Boolean algebra, De Morgan's theorem, and Karnaugh mapping are used to reduce the logic to its simplest form. *Chapters 6, 7, and 8* discuss combinational logic used to provide more advanced functions like parity checking, arithmetic operations, and code converting.

The second half of this book begins with a discussion of the operating characteristics and specifications of the TTL and CMOS logic families (*Chapter 9*). *Chapter 10* introduces flip-flops and the concept of sequential timing analysis. *Chapter 11* makes the reader aware of the practical limitations of digital ICs and some common circuits that are used in later chapters to facilitate the use of medium-scale ICs. *Chapters 12 and 13* expose the student to the operation and use of several common medium-scale ICs used to implement counter and shift register systems. *Chapter 14* deals with oscillator and timing circuits built with digital ICs and with the 555 timer IC. *Chapter 15* teaches the theory behind analog and digital conversion schemes and the practical implementation of ADC and DAC IC converters. *Chapter 16* covers semiconductor, magnetic, and optical memory as it applies to PCs and microprocessor systems. *Chapter 17* introduces microprocessor hardware and software to form a bridge between digital electronics and a follow-up course in microprocessors. The book concludes with several appendices used to supplement the chapter material.

If time constraints only allow for a single-semester course, then the following sections should be covered to provide a coherent overview of digital electronics:

Sections 1.1-1.5, 1.8-1.13

Sections 2.1-2.2

Sections 3.1-3.3, 3.5-3.9

Sections 4.1-4.2

Sections 5.1-5.4

Sections 6.1-6.2

Sections 9.1-9.2

Sections 10.1-10.8

Sections 12.1-12.6

Sections 13.1-13.6

Sections 15.1, 15.5, 15.6, 15.10

Sections 16.1, 16.2, 16.4

Also, if the course is intended for nonelectrical technology students, then the following sections could be omitted to eliminate any basic electricity requirements:

Sections 2.6-2.8

Sections 9.1-9.3, 9.8

Sections 11.3-11.6

Sections 14.2-14.4

Sections 15.2-15.4, 15.12

**Unique Learning Tools**

Special features included in this textbook to enhance the learning and comprehension process are:

- Two CD-ROMs packaged with each copy of this text containing:

– Electronics Workbench® Version 5 circuit data f...

*"About this title" may belong to another edition of this title.*

Published by
Prentice Hall
(2001)

ISBN 10: 0130896292
ISBN 13: 9780130896292

New
Hardcover
Quantity Available: 1

Seller

Rating

**Book Description **Prentice Hall, 2001. Hardcover. Book Condition: New. New never used. Cover has minor shelf rubbings. Your Satisfaction Guaranteed. We ship daily. Bookseller Inventory # A4D170126058

More Information About This Seller | Ask Bookseller a Question

Published by
Prentice Hall
(2001)

ISBN 10: 0130896292
ISBN 13: 9780130896292

New
Hardcover
Quantity Available: 1

Seller

Rating

**Book Description **Prentice Hall, 2001. Hardcover. Book Condition: New. book. Bookseller Inventory # 0130896292

More Information About This Seller | Ask Bookseller a Question

Published by
Prentice Hall
(2001)

ISBN 10: 0130896292
ISBN 13: 9780130896292

New
Hardcover
Quantity Available: 1

Seller

Rating

**Book Description **Prentice Hall, 2001. Hardcover. Book Condition: New. 6. Bookseller Inventory # DADAX0130896292

More Information About This Seller | Ask Bookseller a Question

Published by
Prentice Hall
(2001)

ISBN 10: 0130896292
ISBN 13: 9780130896292

New
Hardcover
Quantity Available: 2

Seller

Rating

**Book Description **Prentice Hall, 2001. Hardcover. Book Condition: New. Bookseller Inventory # P110130896292

More Information About This Seller | Ask Bookseller a Question

Published by
Prentice Hall

ISBN 10: 0130896292
ISBN 13: 9780130896292

New
Hardcover
Quantity Available: 1

Seller

Rating

**Book Description **Prentice Hall. Hardcover. Book Condition: New. 0130896292 New Condition. Bookseller Inventory # NEW6.0045253

More Information About This Seller | Ask Bookseller a Question