The Psychology of Learning : A Student Workbook

3 avg rating
( 1 ratings by Goodreads )
 
9780130917683: The Psychology of Learning : A Student Workbook

This unique workbook promotes an active, hands-on, constructivist approach to the study of the Psychology of Learning, one that follows Bloom's (1956) taxonomy of instructional objectives. The constructivist approach encourages the reader to discover the answers to problems rather than simply look up solutions in a book. This approach assumes that, for information to be remembered, the reader must discover information and manipulate it by checking new information against old information, revising assumptions, beliefs, and knowledge when the old information no longer seems to work. This workbook replaces the passivity of memorizing definitions and procedures with the activities of graphing and interpreting of functional relations—the pillars of theory. Learning and Variables; Functions and Graphs; Basic Principles of Pavlovian Conditioning; Complexities of Pavlovian Conditioning; The Rescorla-Wagner Model; Principles of Operant Conditioning; "Creating" Behavior (Shaping); Schedules of Reinforcement; What Is a Reinforcer?; Punishment and Avoidance; "Simple" Stimulus Control; "Complex" Stimulus Control (Cognitive Processes); Choice and Self-Control (Allocation of Behavior).

"synopsis" may belong to another edition of this title.

Excerpt. © Reprinted by permission. All rights reserved.:

Historically, the study of learning has been at the center of American and British psychology. Thousands of books and research articles have been written on the subject. Even to the casual reader, it is clear that there is no shortage of published materials on learning.

With regard to textbooks, however, we believe the currently available choices fall short in two major ways. First, the goal of condensing the large domain of learning into a textbook of manageable size often results in a dense, encyclopedic, and overwhelmingly passive presentation of historical and contemporary findings. Inevitably, perhaps, the most common remark we have heard from students of learning concerning their textbook is, "Boring!" Second, functional relations, when presented at all, are buried under a pile of facts and experimental procedures. As a consequence, students' learning is impoverished because the variation of functions is overshadowed by the variety of facts; the primary is overshadowed by the secondary. Worst of all, the skills required to understand and use functional relations—skills crucial in learning as in any other experimental science—are simply not taught.

One of the goals of the present workbook is to reduce or eliminate these two shortcomings. Although we do not deny the necessity of surveying the vast field of learning, or of learning basic definitions, procedures, and experimental outcomes, we believe that a course's content must also illuminate and animate the core ideas of the corresponding discipline. To that end, our workbook promotes an active, hands-on, constructivist approach to the study of learning by generally following Bloom's (1956) taxonomy of instructional objectives. Without a more active means of learning the content of learning, students are likely to resort to rote memorization alone, which results in little lasting knowledge of the fundamental ideas of learning or of the many ways to use them. In this case, the benefit of having taken a learning course is ephemeral at best, null at worst, for as Keller and Schoenfeld (1995/1950) wrote in their landmark textbook, a person who takes away from a "course nothing more than a large body of disconnected and sketchily examined items of fact, method, or theory has only a superficial and temporary advantage over the person who never attended the course" (p. LXIII).

To supplement the passive and encyclopedic content of many learning textbooks, our workbook relies heavily on the use of functional relations and their visual representation. Our work with students at a large public university (Indiana University), a small private liberal arts college (University of Redlands), and a foreign university (University of Minho) suggests that guessing, drawing, interpreting, and revising functional relations are excellent exercises to learn about learning and many aspects of the scientific approach, such as how variables are manipulated, controlled, and interrelated; how transient and steady-state analyses, or rates of change and asymptotes, point to different processes; and how theories progress from qualitative to quantitative stages. Moreover, as a take-home message, the visual representation of functional relations may be worth a thousand verbal definitions. It is one thing for students to memorize the definition of feedback function in the study of reinforcement schedules, but it is quite another thing for students to draw a picture that matches the definition, to identify the important properties of the picture, and then to change the picture to deal with a new problem.

To the Instructor

No book can be all things to all people. This workbook is no different. As William James (1890) remarked, "the art of being wise is the art of knowing what to overlook" (p. 369). We have chosen to overlook specialized topics and theories that are of limited utility in understanding the fundamental phenomena of learning. We have also chosen to overlook controversial or poorly specified interpretations, concepts, and theories whose illumination are better suited to face-to-face interchanges between students and instructors than by completing exercises in a workbook. In contrast, what we have done is select those topics that we would want all of our students—not just those who will take more advanced courses in learning—to remember long after a course is over. T o increase the likelihood of this happening, we have replaced the passivity of memorizing definitions and procedures with the activities of graphing and interpreting functional relations -- the pillars of theory. We hope that we have chosen wisely.

Each chapter in the workbook corresponds roughly to a chapter or major sections of a chapter found in most primary learning textbooks, and begins with a brief review of the subject matter of the chapter. The introductory notes do not replace the content of students' primary learning textbooks or lecture notes, nor do they necessarily provide a summary of these textbooks or all the information needed to complete the exercises that follow. For that, students must use their textbooks and, perhaps more importantly, consult with their invaluable instructor and/or teaching assistant. When more extensive background information than is typically presented in textbooks is needed to solve an exercise, that information is usually presented in the exercise itself rather than in the introductions. The primary purpose of the introductions is to remind students of some of the topics that they read in their textbook or discussed in class. The secondary purpose is to, where appropriate, use the introductions to tutor students further about information that is presented in their textbooks. For example, information about cumulative records is routinely presented in learning textbooks, but detailed information teaching students on how to read these important indicators is typically absent. Similarly, most learning textbooks summarize the Rescorla-Wagner equation and the matching law, but few teach students how to use and understand these important equations. Finally, the tertiary purpose of the introductions is to stimulate and motivate students t o reread their textbooks and/or speak with their instructors. Then, following Bloom's (1956) taxonomy of instructional objectives, exercises are generally organized in the following manner:

  1. (Basic) Knowledge is the simplest, most basic form of learning, and amounts t o recalling definitions, procedures, and facts that were learned by rote memorization.
  2. Comprehension requires that students demonstrate an understanding of the material by translating it, interpreting it, or extrapolating it. An example might consist of interpreting the meaning of a graph or inferring the principle underlying a series of experimental outcomes.
  3. Application occurs when students use principles or abstractions to solve novel problems. For example, using knowledge of taste aversion to condition coyotes not t o kill and eat sheep.
  4. Analysis involves reducing complex concepts or ideas into more basic units t o understand how the units are related. An example would be to understand how operant with classical contingencies interact in avoidance behavior.
  5. Synthesis is the creation of a novel idea that is informed by and rooted in existing concepts, facts, and ideas. Examples include designing an experiment to investigate a problem, or writing a paper outlining a new theory.
  6. Evaluation consists of judging an idea against a given standard. For example, students asked to evaluate the assumptions of two-process theory would be demonstrating their ability to evaluate.

As much as possible, we tried to develop exercises from a constructivist approach. This approach assumes that, for information to be remembered long after a course is over, students must discover information and manipulate it by checking new information against old information, revising assumptions, beliefs, and knowledge when the old information no longer seems to work. Such student-centered instruction is the basis for the active learning we try to promote with the workbook. There is no doubt that some questions are challenging. By its very nature, discovery is difficult.

Based upon previous use with our students, the exercises are ranked roughly in order of difficulty (which tends to follow Bloom's taxonomy of instructional objectives). For undergraduates, individual instructors can assign as many or as few questions from a chapter as they wish. We can say that we have assigned every question in the workbook to undergraduates. With some help—sometimes a lot of help—most undergraduates in our courses have been able to solve the exercises. For graduate students, our experience suggests that they will benefit from doing all questions, even those that are seemingly easy. These questions work well for review. No student has ever accused us of not challenging them, and many comment positively about being challenged and on the usefulness of the exercises for helping them learn the course material.

How could you use this workbook? We have used it in several ways with undergraduate students. For example:

  1. When prepared before class, the exercises have served as vehicles for in-class discussions of topics introduced in the primary textbook and lectures.
  2. We have often interrupted a class, asked students to form groups of 3 or 4, and then attempt to solve an exercise during the next three minutes or so. A few solutions are then compared and discussed.
  3. We have also used the exercises as "study guides" and then included some questions on in-class exams.
  4. As an alternative to traditional midterm or final exams, exercises have also been assigned as take-home exams.
  5. For learning courses fortunate enough to include a laboratory or seminar section, the exercises could serve as the catalyst for discussions or small group exercises in these sections.
  6. Finally, the exercises could be assigned for extra credit.

For graduate students, the more challenging exercises in the latter half of each chapter are appropriate for an introductory graduate-level course in learning or for teaching assistants wanting a deeper understanding of learning. A Solutions Manual with answers to all exercises and additional thoughts about the problems is available from the publisher.

To the Student

In this workbook, we invite you to summarize, integrate, extend, and evaluate the most important facts, principles, and theories of learning. We challenge you to generate verbal hypotheses, to then draw them in a graph, to revise them, to consider data from various perspectives, to ponder a puzzle for five, ten, fifteen, twenty minutes and more, to relate concepts included in different chapters from your course's primary textbook, to criticize theories, to compare the content of your textbook with your common sense, and to delve into the rich subject of learning by talking with your instructor. In short, we invite you to be intellectually active.

Every exercise in the workbook has been class-tested by our students over the years. Yet, every time we teach another section of learning, new students manage to provide invaluable feedback for how to further improve the exercises. In this same tradition, we welcome any comments.

"About this title" may belong to another edition of this title.

Top Search Results from the AbeBooks Marketplace

1.

Armando Machado; Francisco J. Silva; William Timberlake [Foreword]
Published by Pearson (2004)
ISBN 10: 0130917680 ISBN 13: 9780130917683
New Paperback Quantity Available: 1
Seller
TEXTBOOKNOOK
(Knoxville, TN, U.S.A.)
Rating
[?]

Book Description Pearson, 2004. Paperback. Book Condition: New. Brand New Text!!! Never Been Used!!! This text is totally clean with no writing at all!!!. Bookseller Inventory # 101178

More Information About This Seller | Ask Bookseller a Question

Buy New
US$ 51.44
Convert Currency

Add to Basket

Shipping: US$ 3.00
Within U.S.A.
Destination, Rates & Speeds

2.

Armando Machado; Francisco J. Silva
Published by Pearson (2004)
ISBN 10: 0130917680 ISBN 13: 9780130917683
New Paperback Quantity Available: 1
Seller
Irish Booksellers
(Rumford, ME, U.S.A.)
Rating
[?]

Book Description Pearson, 2004. Paperback. Book Condition: New. book. Bookseller Inventory # 0130917680

More Information About This Seller | Ask Bookseller a Question

Buy New
US$ 76.39
Convert Currency

Add to Basket

Shipping: FREE
Within U.S.A.
Destination, Rates & Speeds

3.

Armando Machado, Francisco J. Silva, William Timberlake (Foreword)
Published by Pearson (2004)
ISBN 10: 0130917680 ISBN 13: 9780130917683
New Paperback Quantity Available: 1
Seller
Ergodebooks
(RICHMOND, TX, U.S.A.)
Rating
[?]

Book Description Pearson, 2004. Paperback. Book Condition: New. Bookseller Inventory # DADAX0130917680

More Information About This Seller | Ask Bookseller a Question

Buy New
US$ 83.03
Convert Currency

Add to Basket

Shipping: US$ 3.99
Within U.S.A.
Destination, Rates & Speeds

4.

Armando Machado, Francisco J. Silva
Published by Pearson (2004)
ISBN 10: 0130917680 ISBN 13: 9780130917683
New Paperback Quantity Available: 2
Seller
Murray Media
(North Miami Beach, FL, U.S.A.)
Rating
[?]

Book Description Pearson, 2004. Paperback. Book Condition: New. Bookseller Inventory # P110130917680

More Information About This Seller | Ask Bookseller a Question

Buy New
US$ 96.65
Convert Currency

Add to Basket

Shipping: US$ 2.99
Within U.S.A.
Destination, Rates & Speeds

5.

Armando Machado; Francisco J. Silva
Published by Pearson (2004)
ISBN 10: 0130917680 ISBN 13: 9780130917683
New Softcover Quantity Available: > 20
Seller
Palexbooks
(Sanford, NC, U.S.A.)
Rating
[?]

Book Description Pearson, 2004. Book Condition: New. Brand new! Please provide a physical shipping address. Bookseller Inventory # 9780130917683

More Information About This Seller | Ask Bookseller a Question

Buy New
US$ 105.34
Convert Currency

Add to Basket

Shipping: US$ 3.00
Within U.S.A.
Destination, Rates & Speeds

6.

Francisco J. Silva and Armando Machado
ISBN 10: 0130917680 ISBN 13: 9780130917683
New Quantity Available: 1
Seller
Castle Rock
(Pittsford, NY, U.S.A.)
Rating
[?]

Book Description Book Condition: Brand New. Book Condition: Brand New. Bookseller Inventory # 97801309176831.0

More Information About This Seller | Ask Bookseller a Question

Buy New
US$ 105.36
Convert Currency

Add to Basket

Shipping: US$ 3.99
Within U.S.A.
Destination, Rates & Speeds

7.

Machado, Armando/ Silva, Francisco J. Cossio
Published by Prentice Hall (2003)
ISBN 10: 0130917680 ISBN 13: 9780130917683
New Paperback Quantity Available: 1
Seller
Revaluation Books
(Exeter, United Kingdom)
Rating
[?]

Book Description Prentice Hall, 2003. Paperback. Book Condition: Brand New. workbook edition. 150 pages. 11.00x8.75x0.25 inches. In Stock. Bookseller Inventory # 0130917680

More Information About This Seller | Ask Bookseller a Question

Buy New
US$ 128.90
Convert Currency

Add to Basket

Shipping: US$ 7.69
From United Kingdom to U.S.A.
Destination, Rates & Speeds

8.

Machado, Armando; Silva, Francisco J.
Published by Pearson
ISBN 10: 0130917680 ISBN 13: 9780130917683
New PAPERBACK Quantity Available: 1
Seller
Cloud 9 Books
(Wellington, FL, U.S.A.)
Rating
[?]

Book Description Pearson. PAPERBACK. Book Condition: New. 0130917680 New Condition. Bookseller Inventory # NEW6.0045365

More Information About This Seller | Ask Bookseller a Question

Buy New
US$ 165.17
Convert Currency

Add to Basket

Shipping: US$ 4.99
Within U.S.A.
Destination, Rates & Speeds