Linearity plays a critical role in the study of elementary differential equations; linear differential equations, especially systems thereof, demonstrate a fundamental application of linear algebra. In *Differential Equations with Linear Algebra*, we explore this interplay between linear algebra and differential equations and examine introductory and important ideas in each, usually through the lens of important problems that involve differential equations. Written at a sophomore level, the text is accessible to students who have completed multivariable calculus. With a systems-first approach, the book is appropriate for courses for majors in mathematics, science, and engineering that study systems of differential equations.

Because of its emphasis on linearity, the text opens with a full chapter devoted to essential ideas in linear algebra. Motivated by future problems in systems of differential equations, the chapter on linear algebra introduces such key ideas as systems of algebraic equations, linear combinations, the eigenvalue problem, and bases and dimension of vector spaces. This chapter enables students to quickly learn enough linear algebra to appreciate the structure of solutions to linear differential equations and systems thereof in subsequent study and to apply these ideas regularly.

The book offers an example-driven approach, beginning each chapter with one or two motivating problems that are applied in nature. The following chapter develops the mathematics necessary to solve these problems and explores related topics further. Even in more theoretical developments, we use an example-first style to build intuition and understanding before stating or proving general results. Over 100 figures provide visual demonstration of key ideas; the use of the computer algebra system *Maple* and Microsoft *Excel* are presented in detail throughout to provide further perspective and support students' use of technology in solving problems. Each chapter closes with several substantial projects for further study, many of which are based in applications.

Errata sheet available at: www.oup.com/us/companion.websites/9780195385861/pdf/errata.pdf

*"synopsis" may belong to another edition of this title.*

**Matt Boelkins** is Associate Professor of Mathematics at Grand Valley State University.

**Merle C. Potter** is Professor Emeritus of Engineering at Michigan State University and was the first recipient of the Teacher-Scholar award. He has authored or coauthored twenty-four textbooks and exam review books.

**Jack Goldberg** is Professor Emeritus of Mathematics at the University of Michigan. He has published several textbooks and numerous research papers.

Summary in *Mathematical Reviews*

"A very good reference for teachers or students. Recommended."--

*"About this title" may belong to another edition of this title.*

Published by
OUP USA
(2009)

ISBN 10: 0195385861
ISBN 13: 9780195385861

New
Quantity Available: > 20

Seller:

Rating

**Book Description **OUP USA, 2009. HRD. Condition: New. New Book.Shipped from US within 10 to 14 business days.THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # IP-9780195385861

Published by
Oxford University Press
(2016)

ISBN 10: 0195385861
ISBN 13: 9780195385861

New
Paperback
Quantity Available: 1

Seller:

Rating

**Book Description **Oxford University Press, 2016. Paperback. Condition: New. PRINT ON DEMAND Book; New; Publication Year 2016; Not Signed; Fast Shipping from the UK. No. book. Seller Inventory # ria9780195385861_lsuk

Published by
Oxford University Press

ISBN 10: 0195385861
ISBN 13: 9780195385861

New
Hardcover
Quantity Available: 1

Seller:

Rating

**Book Description **Oxford University Press. Condition: New. Hardcover. Worldwide shipping. FREE fast shipping inside USA (express 2-3 day delivery also available). Tracking service included. Ships from United States of America. Seller Inventory # 0195385861

Published by
Oxford University Press, USA
(2009)

ISBN 10: 0195385861
ISBN 13: 9780195385861

New
Hardcover
Quantity Available: 1

Seller:

Rating

**Book Description **Oxford University Press, USA, 2009. Hardcover. Condition: New. Seller Inventory # DADAX0195385861

Published by
OUP USA
(2009)

ISBN 10: 0195385861
ISBN 13: 9780195385861

New
Quantity Available: > 20

Seller:

Rating

**Book Description **OUP USA, 2009. HRD. Condition: New. New Book. Delivered from our US warehouse in 10 to 14 business days. THIS BOOK IS PRINTED ON DEMAND.Established seller since 2000. Seller Inventory # IP-9780195385861

Published by
Oxford University Press
(2018)

ISBN 10: 0195385861
ISBN 13: 9780195385861

New
Hardcover
Quantity Available: 15

Seller:

Rating

**Book Description **Oxford University Press, 2018. Hardcover. Condition: New. Never used! This item is printed on demand. Seller Inventory # 0195385861

Published by
Oxford University Press Inc, United States
(2009)

ISBN 10: 0195385861
ISBN 13: 9780195385861

New
Hardcover
Quantity Available: 10

Seller:

Rating

**Book Description **Oxford University Press Inc, United States, 2009. Hardback. Condition: New. Language: English . Brand New Book ***** Print on Demand *****. Linearity plays a critical role in the study of elementary differential equations; linear differential equations, especially systems thereof, demonstrate a fundamental application of linear algebra. In Differential Equations with Linear Algebra, we explore this interplay between linear algebra and differential equations and examine introductory and important ideas in each, usually through the lens of important problems that involve differential equations. Written at a sophomore level, the text is accessible to students who have completed multivariable calculus. With a systems-first approach, the book is appropriate for courses for majors in mathematics, science, and engineering that study systems of differential equations. Because of its emphasis on linearity, the text opens with a full chapter devoted to essential ideas in linear algebra. Motivated by future problems in systems of differential equations, the chapter on linear algebra introduces such key ideas as systems of algebraic equations, linear combinations, the eigenvalue problem, and bases and dimension of vector spaces. This chapter enables students to quickly learn enough linear algebra to appreciate the structure of solutions to linear differential equations and systems thereof in subsequent study and to apply these ideas regularly. The book offers an example-driven approach, beginning each chapter with one or two motivating problems that are applied in nature. The following chapter develops the mathematics necessary to solve these problems and explores related topics further. Even in more theoretical developments, we use an example-first style to build intuition and understanding before stating or proving general results. Over 100 figures provide visual demonstration of key ideas; the use of the computer algebra system Maple and Microsoft Excel are presented in detail throughout to provide further perspective and support students use of technology in solving problems. Each chapter closes with several substantial projects for further study, many of which are based in applications. Seller Inventory # APC9780195385861

Published by
Oxford University Press Inc, United States
(2009)

ISBN 10: 0195385861
ISBN 13: 9780195385861

New
Hardcover
Quantity Available: 10

Seller:

Rating

**Book Description **Oxford University Press Inc, United States, 2009. Hardback. Condition: New. Language: English . Brand New Book ***** Print on Demand *****.Linearity plays a critical role in the study of elementary differential equations; linear differential equations, especially systems thereof, demonstrate a fundamental application of linear algebra. In Differential Equations with Linear Algebra, we explore this interplay between linear algebra and differential equations and examine introductory and important ideas in each, usually through the lens of important problems that involve differential equations. Written at a sophomore level, the text is accessible to students who have completed multivariable calculus. With a systems-first approach, the book is appropriate for courses for majors in mathematics, science, and engineering that study systems of differential equations. Because of its emphasis on linearity, the text opens with a full chapter devoted to essential ideas in linear algebra. Motivated by future problems in systems of differential equations, the chapter on linear algebra introduces such key ideas as systems of algebraic equations, linear combinations, the eigenvalue problem, and bases and dimension of vector spaces. This chapter enables students to quickly learn enough linear algebra to appreciate the structure of solutions to linear differential equations and systems thereof in subsequent study and to apply these ideas regularly. The book offers an example-driven approach, beginning each chapter with one or two motivating problems that are applied in nature. The following chapter develops the mathematics necessary to solve these problems and explores related topics further. Even in more theoretical developments, we use an example-first style to build intuition and understanding before stating or proving general results. Over 100 figures provide visual demonstration of key ideas; the use of the computer algebra system Maple and Microsoft Excel are presented in detail throughout to provide further perspective and support students use of technology in solving problems. Each chapter closes with several substantial projects for further study, many of which are based in applications. Seller Inventory # APC9780195385861

Published by
Oxford University Press

ISBN 10: 0195385861
ISBN 13: 9780195385861

New
Hardcover
Quantity Available: > 20

Seller:

Rating

**Book Description **Oxford University Press. Hardcover. Condition: New. 0195385861 Special order direct from the distributor. Seller Inventory # ING9780195385861

Published by
Oxford University Press

ISBN 10: 0195385861
ISBN 13: 9780195385861

New
Hardcover
Quantity Available: > 20

Seller:

Rating

**Book Description **Oxford University Press. Hardcover. Condition: New. 576 pages. Dimensions: 9.3in. x 6.4in. x 1.3in.Linearity plays a critical role in the study of elementary differential equations; linear differential equations, especially systems thereof, demonstrate a fundamental application of linear algebra. In Differential Equations with Linear Algebra, we explore this interplay between linear algebra and differential equations and examine introductory and important ideas in each, usually through the lens of important problems that involve differential equations. Written at a sophomore level, the text is accessible to students who have completed multivariable calculus. With a systems-first approach, the book is appropriate for courses for majors in mathematics, science, and engineering that study systems of differential equations. Because of its emphasis on linearity, the text opens with a full chapter devoted to essential ideas in linear algebra. Motivated by future problems in systems of differential equations, the chapter on linear algebra introduces such key ideas as systems of algebraic equations, linear combinations, the eigenvalue problem, and bases and dimension of vector spaces. This chapter enables students to quickly learn enough linear algebra to appreciate the structure of solutions to linear differential equations and systems thereof in subsequent study and to apply these ideas regularly. The book offers an example-driven approach, beginning each chapter with one or two motivating problems that are applied in nature. The following chapter develops the mathematics necessary to solve these problems and explores related topics further. Even in more theoretical developments, we use an example-first style to build intuition and understanding before stating or proving general results. Over 100 figures provide visual demonstration of key ideas; the use of the computer algebra system Maple and Microsoft Excel are presented in detail throughout to provide further perspective and support students use of technology in solving problems. Each chapter closes with several substantial projects for further study, many of which are based in applications. Errata sheet available at: www. oup. comuscompanion. websites9780195385861pdferrata. pdf This item ships from multiple locations. Your book may arrive from Roseburg,OR, La Vergne,TN. Hardcover. Seller Inventory # 9780195385861