This is a comprehensive treatment of feed-forward neural networks from the perspective of statistical pattern recognition. After introducing the basic concepts of pattern recognition, the book describes techniques for modelling probability density functions, and discusses the properties and relative merits of the multi-layer perceptron and radial basis function network models. It also motivates the use of various forms of error functions, and reviews the principal algorithms for error function minimization. As well as providing a detailed discussion of learning and generalization in neural networks, the book also covers the topics of data processing, feature extraction and prior knowledge. The book concludes with an extensive treatment of Bayesian techniques and their applications to neural networks.
"synopsis" may belong to another edition of this title.
This book provides a solid statistical foundation for neural networks from a pattern recognition perspective. The focus is on the types of neural nets that are most widely used in practical applications, such as the multi-layer perceptron and radial basis function networks. Rather than trying to cover many different types of neural networks, Bishop thoroughly covers topics such as density estimation, error functions, parameter optimization algorithms, data pre-processing, and Bayesian methods. All topics are organized well and all mathematical foundations are explained before being applied to neural networks. The text is suitable for a graduate or advanced undergraduate level course on neural networks or for practitioners interested in applying neural networks to real-world problems. The reader is assumed to have the level of math knowledge necessary for an undergraduate science degree.
Chris Bishop is at Aston University.
"About this title" may belong to another edition of this title.
(No Available Copies)
Search Books: Create a WantCan't find the book you're looking for? We'll keep searching for you. If one of our booksellers adds it to AbeBooks, we'll let you know!
Create a Want