Foundations of Hyperbolic Manifolds (Graduate Texts in Mathematics)

4.25 avg rating
( 4 ratings by Goodreads )
 
9780387943480: Foundations of Hyperbolic Manifolds (Graduate Texts in Mathematics)

This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. The reader is assumed to have a basic knowledge of algebra and topology at the first year graduate level of an American university. The book is divided into three parts. The first part, Chapters 1-7, is concerned with hyperbolic geometry and discrete groups. The second part, Chapters 8-12, is devoted to the theory of hyperbolic manifolds. The third part, Chapter 13, integrates the first two parts in a development of the theory of hyperbolic orbifolds. There are over 500 exercises in this book and more than 180 illustrations.

"synopsis" may belong to another edition of this title.

From the Back Cover:

This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference.

The book is divided into three parts. The first part is concerned with hyperbolic geometry and discrete groups. The main results are the characterization of hyperbolic reflection groups and Euclidean crystallographic groups. The second part is devoted to the theory of hyperbolic manifolds. The main results are Mostow’s rigidity theorem and the determination of the global geometry of hyperbolic manifolds of finite volume. The third part integrates the first two parts in a development of the theory of hyperbolic orbifolds. The main result is Poincare«s fundamental polyhedron theorem.

The exposition if at the level of a second year graduate student with particular emphasis placed on readability and completeness of argument. After reading this book, the reader will have the necessary background to study the current research on hyperbolic manifolds.

The second edition is a thorough revision of the first edition that embodies hundreds of changes, corrections, and additions, including over sixty new lemmas, theorems, and corollaries. The new main results are Schl\¬afli’s differential formula and the $n$-dimensional Gauss-Bonnet theorem.

John G. Ratcliffe is a Professor of Mathematics at Vanderbilt University.

Review:

From the reviews of the second edition:

"Designed to be useful as both textbook and a reference, this book renders a real service to the mathematical community by putting together the tools and prerequisites needed to enter the territory of Thurston’s formidable theory of hyperbolic 3-mainfolds ... . Every chapter is followed by historical notes, with attributions to the relevant literature, both of the originators of the idea present in the chapter and of modern presentation thereof. The bibliography contains 463 entries." (Victor V. Pambuccian, Zentralblatt MATH, Vol. 1106 (8), 2007)

"About this title" may belong to another edition of this title.

Buy New View Book
List Price: US$ 89.95
US$ 59.99

Convert Currency

Shipping: US$ 4.99
Within U.S.A.

Destination, Rates & Speeds

Add to Basket

Top Search Results from the AbeBooks Marketplace

1.

Ratcliffe, John G.
Published by Springer
ISBN 10: 038794348X ISBN 13: 9780387943480
New PAPERBACK Quantity Available: 1
Seller:
Cloud 9 Books
(Wellington, FL, U.S.A.)
Rating
[?]

Book Description Springer. PAPERBACK. Book Condition: New. 038794348X New Condition. Bookseller Inventory # NEW7.2209475

More Information About This Seller | Ask Bookseller a Question

Buy New
US$ 59.99
Convert Currency

Add to Basket

Shipping: US$ 4.99
Within U.S.A.
Destination, Rates & Speeds