Soft computing is an emerging discipline which aims to exploit tolerance for imprecision, approximate reasoning, and uncertainty to achieve robustness, tractability, and cost effectiveness for building intelligent machines. Soft computing methodologies include neural networks, fuzzy sets, genetic algorithms, Bayesian networks, and rough sets, among others. In this regard, neural networks are widely used for modeling dynamic solvers, classification of data, and prediction of solutions, whereas fuzzy sets provide a natural framework for dealing with uncertainty. Artificial Neural Networks and Type-2 Fuzzy Set: Elements of Soft Computing and Its Applications covers the fundamental concepts and the latest research on variants of Artificial Neural Networks (ANN), including scientific machine learning and Type-2 Fuzzy Set (T2FS). In addition, the book also covers different applications for solving real-world problems along with various examples and case studies. It may be noted that quite a bit of research has been done on ANN and Fuzzy Set theory/ Fuzzy logic. However, Artificial Neural Networks and Type-2 Fuzzy Set is the first book to cover the use of ANN and fuzzy set theory with regards to Type-2 Fuzzy Set in static and dynamic problems in one place. Artificial Neural Networks and Type-2 Fuzzy Sets are two of the most widely used computational intelligence techniques for solving complex problems in various domains. Both ANN and T2FS have unique characteristics that make them suitable for different types of problems. This book provides the reader with in-depth understanding of how to apply these computational intelligence techniques in various fields of science and engineering in general and static and dynamic problems in particular. Further, for validation purposes of the ANN and fuzzy models, the obtained solutions of each model in the book is compared with already existing solutions that have been obtained with numerical or analytical methods.
"synopsis" may belong to another edition of this title.
Dr. Snehashish Chakraverty is a Senior Professor in the Department of Mathematics (Applied Mathematics Group), National Institute of Technology Rourkela, with over 30 years of teaching and research experience. A gold medalist from the University of Roorkee (now IIT Roorkee), he earned his Ph.D. from IIT Roorkee and completed post-doctoral work at the University of Southampton (UK) and Concordia University (Canada). He has also served as a visiting professor in Canada and South Africa. Dr. Chakraverty has authored/edited 38 books and published over 495 research papers. His research spans differential equations (ordinary, partial, fractional), numerical and computational methods, structural and fluid dynamics, uncertainty modeling, and soft computing techniques. He has guided 27 Ph.D. scholars, with 10 currently under his supervision.
He has led 16 funded research projects and hosted international researchers through prestigious fellowships. Recognized in the top 2% of scientists globally (Stanford-Elsevier list, 2020–2024), he has received numerous awards including the CSIR Young Scientist Award, BOYSCAST Fellowship, INSA Bilateral Exchange, and IOP Top Cited Paper Awards. He is Chief Editor of International Journal of Fuzzy Computation and Modelling and serves on several international editorial boards.
Arup Kumar Sahoo is currently working as an Assistant Professor in the Department of Computer Science and Engineering at Siksha “O” Anusandhan (Deemed to be University), Odisha, India. He has joined as a postdoctoral research fellow at the Autonomous Navigation and Sensor Fusion Lab (ANSFL), The Hatter Department of Marine Technologies, University of Haifa, Israel. Dr. Sahoo holds a PhD from the Department of Mathematics, National Institute of Technology Rourkela, Odisha, India. He earned his MPhil in Mathematics from Utkal University, Bhubaneswar, Odisha, India, and MSc in Mathematics and Computing from Biju Patnaik University of Technology, Rourkela, Odisha, India. Dr Sahoo has authored and co-authored 13 research papers and book chapters published in journals and conferences. In 2023, he received the Best Paper Presenter Award at an IEEE Conference.
Dhabaleswar Mohapatra is currently working as an Assistant Professor in the Department of Mathematics at the Institute of Technical Education and Research, Siksha ‘O’ Anusandhan (Deemed to be University), Odisha, India. He received his PhD from the National Institute of Technology, Rourkela, Odisha, India. To date, he has published 12 research articles in journals and book chapters.
Soft computing is an emerging discipline which aims to exploit tolerance for imprecision, approximate reasoning, and uncertainty to achieve robustness, tractability, and cost effectiveness for building intelligent machines. Soft computing methodologies include neural networks, fuzzy sets, genetic algorithms, Bayesian networks, and rough sets, among others. In this regard, neural networks are widely used for modeling dynamic solvers, classification of data, and prediction of solutions, whereas fuzzy sets provide a natural framework for dealing with uncertainty. Artificial Neural Networks and Type-2 Fuzzy Set: Elements of Soft Computing and Its Applications covers the fundamental concepts and the latest research on variants of Artificial Neural Networks (ANN), including scientific machine learning and Type-2 Fuzzy Set (T2FS). In addition, the book also covers different applications for solving real-world problems along with various examples and case studies. It may be noted that quite a bit of research has been done on ANN and Fuzzy Set theory/ Fuzzy logic. However, Artificial Neural Networks and Type-2 Fuzzy Set is the first book to cover the use of ANN and fuzzy set theory with regards to Type-2 Fuzzy Set in static and dynamic problems in one place. Artificial Neural Networks and Type-2 Fuzzy Sets are two of the most widely used computational intelligence techniques for solving complex problems in various domains. Both ANN and T2FS have unique characteristics that make them suitable for different types of problems. This book provides the reader with in-depth understanding of how to apply these computational intelligence techniques in various fields of science and engineering in general and static and dynamic problems in particular. Further, for validation purposes of the ANN and fuzzy models, the obtained solutions of each model in the book is compared with already existing solutions that have been obtained with numerical or analytical methods.
"About this title" may belong to another edition of this title.
US$ 2.64 shipping within U.S.A.
Destination, rates & speedsSeller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 48395125-n
Quantity: 2 available
Seller: Brook Bookstore On Demand, Napoli, NA, Italy
Condition: new. Questo è un articolo print on demand. Seller Inventory # OLS8ZOTOQ5
Quantity: Over 20 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. 1st edition NO-PA16APR2015-KAP. Seller Inventory # 26401501509
Quantity: 3 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 48395125
Quantity: 2 available
Seller: Grand Eagle Retail, Mason, OH, U.S.A.
Paperback. Condition: new. Paperback. Soft computing is an emerging discipline which aims to exploit tolerance for imprecision, approximate reasoning, and uncertainty to achieve robustness, tractability, and cost effectiveness for building intelligent machines. Soft computing methodologies include neural networks, fuzzy sets, genetic algorithms, Bayesian networks, and rough sets, among others. In this regard, neural networks are widely used for modeling dynamic solvers, classification of data, and prediction of solutions, whereas fuzzy sets provide a natural framework for dealing with uncertainty. Artificial Neural Networks and Type-2 Fuzzy Set: Elements of Soft Computing and Its Applications covers the fundamental concepts and the latest research on variants of Artificial Neural Networks (ANN), including scientific machine learning and Type-2 Fuzzy Set (T2FS). In addition, the book also covers different applications for solving real-world problems along with various examples and case studies. It may be noted that quite a bit of research has been done on ANN and Fuzzy Set theory/ Fuzzy logic. However, Artificial Neural Networks and Type-2 Fuzzy Set is the first book to cover the use of ANN and fuzzy set theory with regards to Type-2 Fuzzy Set in static and dynamic problems in one place. Artificial Neural Networks and Type-2 Fuzzy Sets are two of the most widely used computational intelligence techniques for solving complex problems in various domains. Both ANN and T2FS have unique characteristics that make them suitable for different types of problems. This book provides the reader with in-depth understanding of how to apply these computational intelligence techniques in various fields of science and engineering in general and static and dynamic problems in particular. Further, for validation purposes of the ANN and fuzzy models, the obtained solutions of each model in the book is compared with already existing solutions that have been obtained with numerical or analytical methods. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9780443328947
Quantity: 1 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 250 pages. 9.25x7.50x9.25 inches. In Stock. Seller Inventory # __0443328943
Quantity: 2 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. Seller Inventory # 18401501519
Quantity: 3 available
Seller: CitiRetail, Stevenage, United Kingdom
Paperback. Condition: new. Paperback. Soft computing is an emerging discipline which aims to exploit tolerance for imprecision, approximate reasoning, and uncertainty to achieve robustness, tractability, and cost effectiveness for building intelligent machines. Soft computing methodologies include neural networks, fuzzy sets, genetic algorithms, Bayesian networks, and rough sets, among others. In this regard, neural networks are widely used for modeling dynamic solvers, classification of data, and prediction of solutions, whereas fuzzy sets provide a natural framework for dealing with uncertainty. Artificial Neural Networks and Type-2 Fuzzy Set: Elements of Soft Computing and Its Applications covers the fundamental concepts and the latest research on variants of Artificial Neural Networks (ANN), including scientific machine learning and Type-2 Fuzzy Set (T2FS). In addition, the book also covers different applications for solving real-world problems along with various examples and case studies. It may be noted that quite a bit of research has been done on ANN and Fuzzy Set theory/ Fuzzy logic. However, Artificial Neural Networks and Type-2 Fuzzy Set is the first book to cover the use of ANN and fuzzy set theory with regards to Type-2 Fuzzy Set in static and dynamic problems in one place. Artificial Neural Networks and Type-2 Fuzzy Sets are two of the most widely used computational intelligence techniques for solving complex problems in various domains. Both ANN and T2FS have unique characteristics that make them suitable for different types of problems. This book provides the reader with in-depth understanding of how to apply these computational intelligence techniques in various fields of science and engineering in general and static and dynamic problems in particular. Further, for validation purposes of the ANN and fuzzy models, the obtained solutions of each model in the book is compared with already existing solutions that have been obtained with numerical or analytical methods. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Seller Inventory # 9780443328947
Quantity: 1 available
Seller: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Ireland
Condition: New. 2025. paperback. . . . . . Seller Inventory # V9780443328947
Quantity: 2 available
Seller: Kennys Bookstore, Olney, MD, U.S.A.
Condition: New. 2025. paperback. . . . . . Books ship from the US and Ireland. Seller Inventory # V9780443328947
Quantity: 2 available