An accessible and self-contained introduction to statistical models-now in a modernized new edition
Generalized, Linear, and Mixed Models, Second Edition provides an up-to-date treatment of the essential techniques for developing and applying a wide variety of statistical models. The book presents thorough and unified coverage of the theory behind generalized, linear, and mixed models and highlights their similarities and differences in various construction, application, and computational aspects.
A clear introduction to the basic ideas of fixed effects models, random effects models, and mixed models is maintained throughout, and each chapter illustrates how these models are applicable in a wide array of contexts. In addition, a discussion of general methods for the analysis of such models is presented with an emphasis on the method of maximum likelihood for the estimation of parameters. The authors also provide comprehensive coverage of the latest statistical models for correlated, non-normally distributed data. Thoroughly updated to reflect the latest developments in the field, the Second Edition features:
"synopsis" may belong to another edition of this title.
Charles E. McCulloch, PhD, is Professor and Head of the Division of Biostatistics in the School of Medicine at the University of California, San Francisco. A Fellow of the American Statistical Association, Dr. McCulloch is the author of numerous published articles in the areas of longitudinal data analysis, generalized linear mixed models, and latent class models and their applications.
Shayle R. Searle, PhD, is Professor Emeritus in the Department of Biological Statistics and Computational Biology at Cornell University. Dr. Searle is the author of Linear Models, Linear Models for Unbalanced Data, Matrix Algebra Useful for Statistics, and Variance Components, all published by Wiley.
John M. Neuhaus, PhD, is Professor of Biostatistics in the School of Medicine at the University of California, San Francisco. A Fellow of the American Statistical Association and the Royal Statistical Society, Dr. Neuhaus has authored or coauthored numerous journal articles on statistical methods for analyzing correlated response data and assessments on the effects of statistical model misspecification.
"I strongly recommend...[it] for inclusion in math and statistics libraries and in the personal libraries of professional statisticians." (Journal of the American Statistical Association, December 2006)
"...well written and suitable to be a textbook...I enjoyed reading this book and recommend it highly to statisticians." (Journal of Statistical Computation and Simulation, January 2006)
"This text is to be highly recommended as one that provides a modern perspective on fitting models to data." (Short Book Reviews, Vol. 21, No. 2, August 2001)
"For graduate students and?statisticians, McCulloch and Searle begin by reviewing the basics of linear models and linear mixed models..." (SciTech Book News, Vol. 25, No. 4, December 2001)
"...a very good reference book." (Zentralblatt MATH, Vol. 964, 2001/14)
"...another fine contribution to the statistics literature from these respected authors..." (Technometrics, Vol. 45, No. 1, February 2003)
"About this title" may belong to another edition of this title.
Shipping:
FREE
Within U.S.A.
Seller: BGV Books LLC, Murray, KY, U.S.A.
Condition: Good. Exact ISBN match. Immediate shipping. No funny business. Pics available upon request. Seller Inventory # 9780470073711
Quantity: 1 available
Seller: TextbookRush, Grandview Heights, OH, U.S.A.
Condition: Brand New. Ships SAME or NEXT business day. We Ship to APO/FPO addr. Choose EXPEDITED shipping and receive in 2-5 business days within the United States. See our member profile for customer support contact info. We have an easy return policy. Seller Inventory # 53439897
Quantity: 2 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: good. May show signs of wear, highlighting, writing, and previous use. This item may be a former library book with typical markings. No guarantee on products that contain supplements Your satisfaction is 100% guaranteed. Twenty-five year bookseller with shipments to over fifty million happy customers. Seller Inventory # 4224498-5
Quantity: 2 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: good. May show signs of wear, highlighting, writing, and previous use. This item may be a former library book with typical markings. No guarantee on products that contain supplements Your satisfaction is 100% guaranteed. Twenty-five year bookseller with shipments to over fifty million happy customers. Seller Inventory # 4224498-5
Quantity: 2 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 4224498
Quantity: 1 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 4224498-n
Quantity: 1 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9780470073711_new
Quantity: Over 20 available
Seller: Grand Eagle Retail, Fairfield, OH, U.S.A.
Hardcover. Condition: new. Hardcover. An accessible and self-contained introduction to statistical models-now in a modernized new edition Generalized, Linear, and Mixed Models, Second Edition provides an up-to-date treatment of the essential techniques for developing and applying a wide variety of statistical models. The book presents thorough and unified coverage of the theory behind generalized, linear, and mixed models and highlights their similarities and differences in various construction, application, and computational aspects. A clear introduction to the basic ideas of fixed effects models, random effects models, and mixed models is maintained throughout, and each chapter illustrates how these models are applicable in a wide array of contexts. In addition, a discussion of general methods for the analysis of such models is presented with an emphasis on the method of maximum likelihood for the estimation of parameters. The authors also provide comprehensive coverage of the latest statistical models for correlated, non-normally distributed data. Thoroughly updated to reflect the latest developments in the field, the Second Edition features: A new chapter that covers omitted covariates, incorrect random effects distribution, correlation of covariates and random effects, and robust variance estimationA new chapter that treats shared random effects models, latent class models, and properties of modelsA revised chapter on longitudinal data, which now includes a discussion of generalized linear models, modern advances in longitudinal data analysis, and the use between and within covariate decompositionsExpanded coverage of marginal versus conditional modelsNumerous new and updated examples With its accessible style and wealth of illustrative exercises, Generalized, Linear, and Mixed Models, Second Edition is an ideal book for courses on generalized linear and mixed models at the upper-undergraduate and beginning-graduate levels. It also serves as a valuable reference for applied statisticians, industrial practitioners, and researchers. - This new edition presents a unified, accessible, and self-contained treatment of the latest statistical methods for analyzing correlated, non-normally distributed data. - The book's unified treatment addresses the needs of applications-oriented users of statistical packages and also graduate students in statistics. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9780470073711
Quantity: 1 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 4224498-n
Quantity: 1 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: As New. Unread book in perfect condition. Seller Inventory # 4224498
Quantity: 1 available