Multidisciplinary resource for graduate studies and the biotechnology industry
Knowledge of the genetic basis of biological functioning continues to grow at an astronomical rate, as do the challenges and opportunities of applying this information to the production of therapeutic compounds, specialty biochemicals, functional food ingredients, environmentally friendly biocatalysts, and new bioproducts from renewable resources. While genetic engineering of living organisms transforms the science of genomics into treatments for cancer, diabetes, and heart disease, or products for industry and agriculture, the science and technology of bioseparations are the keys to delivering these products in a purified form suitable for use by people.
The methods, theory, and materials that reduce the science of bioseparations to practice, whether in the laboratory or the plant, are the subjects of Bioseparations Engineering. Examples address purification of biomolecules ranging from recombinant proteins to gene therapy products, with footnotes detailing economics of the products. Mechanistic analysis and engineering design methods are given for:
* Isocratic and gradient chromatography
* Sedimentation, centrifugation, and filtration
* Membrane systems
* Precipitation and crystallization
Topics addressed within this framework are: stationary phase selection; separations development; modeling of ion exchange, size exclusion, reversed phase, hydrophobic interaction, and affinity chromatography; the impact of regulatory issues on chromatography process design; organization of separation strategies into logical sequences of purification steps; and bridges between molecular biology, combinatorial methods, and separations science.
A result of teaching and developing the subject matter over ten years, Bioseparations Engineering is an ideal text for graduate students, as well as a timely desk book for process engineers, process scientists, researchers, and research associates in the pharmaceutical, food, and life sciences industries.
"synopsis" may belong to another edition of this title.
MICHAEL R. LADISCH, PhD, is Distinguished Professor in the Department of Agricultural and Biological Engineering and the Department of Biomedical Engineering, and the Director of the Laboratory of Renewable Resources Engineering, at Purdue University in West Lafayette, Indiana.
Multidisciplinary resource for graduate studies and the biotechnology industry
Knowledge of the genetic basis of biological functioning continues to grow at an astronomical rate, as do the challenges and opportunities of applying this information to the production of therapeutic compounds, specialty biochemicals, functional food ingredients, environmentally friendly biocatalysts, and new bioproducts from renewable resources. While genetic engineering of living organisms transforms the science of genomics into treatments for cancer, diabetes, and heart disease, or products for industry and agriculture, the science and technology of bioseparations are the keys to delivering these products in a purified form suitable for use by people.
The methods, theory, and materials that reduce the science of bioseparations to practice, whether in the laboratory or the plant, are the subjects of Bioseparations Engineering. Examples address purification of biomolecules ranging from recombinant proteins to gene therapy products, with footnotes detailing economics of the products. Mechanistic analysis and engineering design methods are given for:
* Isocratic and gradient chromatography
* Sedimentation, centrifugation, and filtration
* Membrane systems
* Precipitation and crystallization
Topics addressed within this framework are: stationary phase selection; separations development; modeling of ion exchange, size exclusion, reversed phase, hydrophobic interaction, and affinity chromatography; the impact of regulatory issues on chromatography process design; organization of separation strategies into logical sequences of purification steps; and bridges between molecular biology, combinatorial methods, and separations science.
A result of teaching and developing the subject matter over ten years, Bioseparations Engineering is an ideal text for graduate students, as well as a timely desk book for process engineers, process scientists, researchers, and research associates in the pharmaceutical, food, and life sciences industries.
Multidisciplinary resource for graduate studies and the biotechnology industry
Knowledge of the genetic basis of biological functioning continues to grow at an astronomical rate, as do the challenges and opportunities of applying this information to the production of therapeutic compounds, specialty biochemicals, functional food ingredients, environmentally friendly biocatalysts, and new bioproducts from renewable resources. While genetic engineering of living organisms transforms the science of genomics into treatments for cancer, diabetes, and heart disease, or products for industry and agriculture, the science and technology of bioseparations are the keys to delivering these products in a purified form suitable for use by people.
The methods, theory, and materials that reduce the science of bioseparations to practice, whether in the laboratory or the plant, are the subjects of Bioseparations Engineering. Examples address purification of biomolecules ranging from recombinant proteins to gene therapy products, with footnotes detailing economics of the products. Mechanistic analysis and engineering design methods are given for:
* Isocratic and gradient chromatography
* Sedimentation, centrifugation, and filtration
* Membrane systems
* Precipitation and crystallization
Topics addressed within this framework are: stationary phase selection; separations development; modeling of ion exchange, size exclusion, reversed phase, hydrophobic interaction, and affinity chromatography; the impact of regulatory issues on chromatography process design; organization of separation strategies into logical sequences of purification steps; and bridges between molecular biology, combinatorial methods, and separations science.
A result of teaching and developing the subject matter over ten years, Bioseparations Engineering is an ideal text for graduate students, as well as a timely desk book for process engineers, process scientists, researchers, and research associates in the pharmaceutical, food, and life sciences industries.
"About this title" may belong to another edition of this title.
Seller: HPB-Red, Dallas, TX, U.S.A.
hardcover. Condition: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Seller Inventory # S_372381490
Seller: ThriftBooks-Atlanta, AUSTELL, GA, U.S.A.
Hardcover. Condition: Good. No Jacket. Pages can have notes/highlighting. Spine may show signs of wear. ~ ThriftBooks: Read More, Spend Less. Seller Inventory # G0471244767I3N00
Seller: Reader's Corner, Inc., Raleigh, NC, U.S.A.
Hardcover. Condition: As New. No Jacket. 1st Edition. This is a fine, as new, hardcover first edition, third edition copy, no DJ, black spine. 735 pages with index. Seller Inventory # 107209
Seller: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.
Condition: New. Brand New. Soft Cover International Edition. Different ISBN and Cover Image. Priced lower than the standard editions which is usually intended to make them more affordable for students abroad. The core content of the book is generally the same as the standard edition. The country selling restrictions may be printed on the book but is no problem for the self-use. This Item maybe shipped from US or any other country as we have multiple locations worldwide. Seller Inventory # ABNR-204375
Seller: Phatpocket Limited, Waltham Abbey, HERTS, United Kingdom
Condition: Good. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Ex-library, so some stamps and wear, but in good overall condition. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions. Seller Inventory # Z1-C-088-07643
Quantity: 7 available
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
HRD. Condition: Used - Good. Used Book. Shipped from UK. Established seller since 2000. Seller Inventory # P2-9780471244769
Quantity: 1 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 31723-n
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Feb2215580223379
Seller: Grand Eagle Retail, Bensenville, IL, U.S.A.
Hardcover. Condition: new. Hardcover. Multidisciplinary resource for graduate studies and the biotechnology industry Knowledge of the genetic basis of biological functioning continues to grow at an astronomical rate, as do the challenges and opportunities of applying this information to the production of therapeutic compounds, specialty biochemicals, functional food ingredients, environmentally friendly biocatalysts, and new bioproducts from renewable resources. While genetic engineering of living organisms transforms the science of genomics into treatments for cancer, diabetes, and heart disease, or products for industry and agriculture, the science and technology of bioseparations are the keys to delivering these products in a purified form suitable for use by people. The methods, theory, and materials that reduce the science of bioseparations to practice, whether in the laboratory or the plant, are the subjects of Bioseparations Engineering. Examples address purification of biomolecules ranging from recombinant proteins to gene therapy products, with footnotes detailing economics of the products. Mechanistic analysis and engineering design methods are given for: * Isocratic and gradient chromatography * Sedimentation, centrifugation, and filtration * Membrane systems * Precipitation and crystallization Topics addressed within this framework are: stationary phase selection; separations development; modeling of ion exchange, size exclusion, reversed phase, hydrophobic interaction, and affinity chromatography; the impact of regulatory issues on chromatography process design; organization of separation strategies into logical sequences of purification steps; and bridges between molecular biology, combinatorial methods, and separations science. A result of teaching and developing the subject matter over ten years, Bioseparations Engineering is an ideal text for graduate students, as well as a timely desk book for process engineers, process scientists, researchers, and research associates in the pharmaceutical, food, and life sciences industries. Bioseparations engineering is the "multidisciplinary application of fundamental engineering and biological principles to the design of adsorbents, systems, and processes for the separation of biological molecules. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9780471244769
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 31723