This survey of thermal systems engineering combines coverage of thermodynamics, fluid flow, and heat transfer in one volume. Developed by leading educators in the field, this book sets the standard for those interested in the thermal-fluids market. Drawing on the best of what works from market leading texts in thermodynamics (Moran), fluids (Munson) and heat transfer (Incropera), this book introduces thermal engineering using a systems focus, introduces structured problem-solving techniques, and provides applications of interest to all engineers.
"synopsis" may belong to another edition of this title.
Written by four of the leading authors in the field, INTRODUCTION TO THERMAL SYSTEMS ENGINEERING offers an integrated presentation of thermodynamics, fluid mechanics, and heat transfer—in one concise text!
Authors Michael Moran, Howard Shapiro, Bruce Munson, and David DeWitt have surveyed the fields of thermodynamics, fluid mechanics, and heat transfer, and identified the critical subject areas needed to analyze thermal systems. The text contains all the core material you need in thermal systems engineering, while an accompanying CD offers the full printed text, 200 pages of additional content, and a wealth of resources that will enhance your understanding of the material and help you hone your problem-solving skills.
Features
Includes a FREE eText on CD Containing:
Dr. Michael J. Moran, is Professor of Mechanical Engineering at the Ohio State University. He is a specialist in engineering thermodynamics and thermoeconomics. He also works in the area of thermal design and optimization.
Munson is Professor of Engineering Mechanics at Iowa State University. He received his B.S. and M.S. degrees from Purdue University and his Ph.D. degree from the Aerospace Engineering and Mechanics Department of the University of Minnesota in 1970. mechanics courses for studies in civil engineering, mechanical engineering, engineering science, and agricultural engineering and is the recipient of an Iowa State University Superior Engineering Teacher Award and the Iowa State University Alumni Association Faculty Citation.
He has authored and coauthored many theoretical and experimental technical papers on hydrodynamic stability, low Reynolds number flow, secondary flow, and the applications on hydrodynamic stability, low Reynolds number flow, secondary flow, and the applications of viscous incompressible flow. He is a member of the American Society of Mechanical Engineers and The American Physical Society.
Donald F. Young, Anson Marston Distinguished Professor Emeritus in Engineering, is a Faculty member in the Department of Aerospace Engineering and Engineering Mechanics at Iowa State University. Dr. young received his B.S. degree in mechanical engineering, his M.S. and Ph.D. degrees in theoretical and applied mechanics from Iowa State, and has taught both undergraduateand graduate courses in fluid mechanics for many years. In addition to being named a Distinguished Professor in the College of engineering, Dr. Young has also Received the Standard Oil Foundation Outstanding Teacher Award and the Iowa State University Alumni Association Faculty Citation. He has been engaged in fluid mechanics research for more than 35 years, with special interest in similitude and modeling and the interdisciplinary field o biomedical fluid mechanics. Dr.. Young has contributed to many technical publications and is the author or coauthor of two textbooks on applied mechanics. He is a fellow of the American society of Mechanical Engineers.
Theodore H. Okiishi, Associate Dean of Engineering and past Chair of Mechanical engineering at Iowa State university, has taught fluid mechanics courses there since 1967. He received his undergraduate and graduate degrees at Iowa State.
Form 1965 to 1967, Dr. Okiishi served as a U.S. Army officer with duty assignments at the National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio, where he participated in rocket nozzle heat transfer research, and at the combined Intelligence Center, Saigon, Republic of south Vietnam, where he studied seasonal river flooding problems.
Professor Okiishi is active in research on turbomachinery fluid dynamics. He and his graduate students and other colleagues have written a number of journal articles based on their studies. some of these projects have involved significant collaboration with government and industrial laboratory researchers with two technical papers winning the ASME Melville Medal.
Dr. Okiishi has received several awards for teaching. He hasdeveloped undergraduate and graduate courses in classical fluid dynamics as well as the fluid dynamics of turbomachines.
He is a licensed professional engineer. His technical society activities include having been chair of the board of directors of The American society of Mechanical Engineers (ASME) International Gas Turbine Institute. He is a Fellow of The American Society of (ASME) International Gas Turbine Institute. He is a Fellow of The American society of Mechanical Engineers and the editor of the "Journal of Turbomachinery.
Purdue Univ.
Purdue Univ.
Munson is Professor of Engineering Mechanics at Iowa State University. He received his B.S. and M.S. degrees from Purdue University and his Ph.D. degree from the Aerospace Engineering and Mechanics Department of the University of Minnesota in 1970. mechanics courses for studies in civil engineering, mechanical engineering, engineering science, and agricultural engineering and is the recipient of an Iowa State University Superior Engineering Teacher Award and the Iowa State University Alumni Association Faculty Citation.
He has authored and coauthored many theoretical and experimental technical papers on hydrodynamic stability, low Reynolds number flow, secondary flow, and the applications on hydrodynamic stability, low Reynolds number flow, secondary flow, and the applications of viscous incompressible flow. He is a member of the American Society of Mechanical Engineers and The American Physical Society.
Donald F. Young, Anson Marston Distinguished Professor Emeritus in Engineering, is a Faculty member in the Department of Aerospace Engineering and Engineering Mechanics at Iowa State University. Dr. young received his B.S. degree in mechanical engineering, his M.S. and Ph.D. degrees in theoretical and applied mechanics from Iowa State, and has taught both undergraduateand graduate courses in fluid mechanics for many years. In addition to being named a Distinguished Professor in the College of engineering, Dr. Young has also Received the Standard Oil Foundation Outstanding Teacher Award and the Iowa State University Alumni Association Faculty Citation. He has been engaged in fluid mechanics research for more than 35 years, with special interest in similitude and modeling and the interdisciplinary field o biomedical fluid mechanics. Dr.. Young has contributed to many technical publications and is the author or coauthor of two textbooks on applied mechanics. He is a fellow of the American society of Mechanical Engineers.
Theodore H. Okiishi, Associate Dean of Engineering and past Chair of Mechanical engineering at Iowa State university, has taught fluid mechanics courses there since 1967. He received his undergraduate and graduate degrees at Iowa State.
Form 1965 to 1967, Dr. Okiishi served as a U.S. Army officer with duty assignments at the National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio, where he participated in rocket nozzle heat transfer research, and at the combined Intelligence Center, Saigon, Republic of south Vietnam, where he studied seasonal river flooding problems.
Professor Okiishi is active in research on turbomachinery fluid dynamics. He and his graduate students and other colleagues have written a number of journal articles based on their studies. some of these projects have involved significant collaboration with government and industrial laboratory researchers with two technical papers winning the ASME Melville Medal.
Dr. Okiishi has received several awards for teaching. He hasdeveloped undergraduate and graduate courses in classical fluid dynamics as well as the fluid dynamics of turbomachines.
He is a licensed professional engineer. His technical society activities include having been chair of the board of directors of The American society of Mechanical Engineers (ASME) International Gas Turbine Institute. He is a Fellow of The American Society of (ASME) International Gas Turbine Institute. He is a Fellow of The American society of Mechanical Engineers and the editor of the "Journal of Turbomachinery.
"About this title" may belong to another edition of this title.
US$ 14.36 shipping from United Kingdom to U.S.A.
Destination, rates & speedsSeller: Phatpocket Limited, Waltham Abbey, HERTS, United Kingdom
Condition: Good. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Ex-library, so some stamps and wear, but in good overall condition. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions. Seller Inventory # Z1-C-029-02270
Quantity: 1 available
Seller: Mispah books, Redhill, SURRE, United Kingdom
paperback. Condition: Very Good. Very Good. book. Seller Inventory # ERICA82904714290154
Quantity: 1 available