This is a concise graduate level introduction to analytical functional methods in quantum field theory. Functional integral methods provide relatively simple solutions to a wide range of problems in quantum field theory. After introducing the basic mathematical background, this book goes on to study applications and consequences of the formalism to the study of series expansions, measure, phase transitions, physics on spaces with nontrivial topologies, stochastic quantisation, fermions, QED, non-abelian gauge theories, symmetry breaking, the effective potential, finite temperature field theory, instantons and compositeness. Serious attention is paid to the shortcomings of the conventional formalism (e.g. problems of measure) as well as detailed appraisal of the ambiguities of series summation. This book will be of great use to graduate students in theoretical physics wishing to learn the use of functional integrals in quantum field theory. It will also be a useful reference for researchers in theoretical physics, especially those with an interest in experimental and theoretical particle physics and quantum field theory.

*"synopsis" may belong to another edition of this title.*

The applications of functional integral methods introduced in this text for solving a range of problems in quantum field theory will prove useful for students and researchers in theoretical physics and quantum field theory.

Rivers is affiliated with the Department of Physics at the Imperial College of Science and Technology at the University of London.

*"About this title" may belong to another edition of this title.*

Published by
Cambridge University Press
(1987)

ISBN 10: 0521259797
ISBN 13: 9780521259798

New
Hardcover
Quantity Available: 2

Seller:

Rating

**Book Description **Cambridge University Press, 1987. Hardcover. Condition: New. Never used!. Seller Inventory # P110521259797