This book presents a rigorous account of the fundamentals of numerical analysis of both ordinary and partial differential equations. The point of departure is mathematical but the exposition strives to maintain a balance among theoretical, algorithmic and applied aspects of the subject. In detail, topics covered include numerical solution of ordinary differential equations by multistep and Runge-Kutta methods; finite difference and finite elements techniques for the Poisson equation; a variety of algorithms to solve large, sparse algebraic systems; and methods for parabolic and hyperbolic differential equations and techniques of their analysis. The book is accompanied by an appendix that presents brief back-up in a number of mathematical topics.
"synopsis" may belong to another edition of this title.
This text presents a rigorous account of the fundamentals of numerical analysis of both ordinary and partial differential equations. The point of departure is mathematical but the exposition strives to maintain a balance among theoretical, algorithmic and applied aspects of the subject.
Arieh Iserles is a Professor in Numerical Analysis of Differential Equations in the Department of Applied Mathematics and Theoretical Physics at the University of Cambridge. He has been awarded the Onsager medal and served as a chair of the Society for Foundations of Computational Mathematics. He is also Managing Editor of Acta Numerica, Editor in Chief of Foundations of Computational Mathematics, and an editor of numerous other publications.
"About this title" may belong to another edition of this title.
(No Available Copies)
Search Books: Create a WantCan't find the book you're looking for? We'll keep searching for you. If one of our booksellers adds it to AbeBooks, we'll let you know!
Create a Want