Items related to Adaptive Finite Element Methods for Differential Equations...

Adaptive Finite Element Methods for Differential Equations (Lectures in Mathematics Eth Zurich) - Hardcover

 
9780817670092: Adaptive Finite Element Methods for Differential Equations (Lectures in Mathematics Eth Zurich)

This specific ISBN edition is currently not available.

Synopsis

The key issues are a posteriori error estimation and it automatic mesh adaptation. Besides the traditional approach of energy-norm error control, a new duality-based technique, the Dual Weighted Residual method for goal-oriented error estimation, is discussed in detail. This method aims at economical computation of arbitrary quantities of physical interest by properly adapting the computational mesh. This is typically required in the design cycles of technical applications. For example, the drag coefficient of a body immersed in a viscous flow is computed, then it is minimized by varying certain control parameters, and finally the stability of the resulting flow is investigated by solving an eigenvalue problem. `Goal-oriented' adaptivity is designed to achieve these tasks with minimal cost. At the end of each chapter some exercises are posed in order to assist the interested reader in better understanding the concepts presented. Solutions and accompanying remarks are given in the Appendix.

"synopsis" may belong to another edition of this title.

Review

"Most graduate students in engineering and physical sciences should be able to handle the material without excessive difficulty. The presentation is very much a tutorial approach promoting a hands-on experience, reinforced with practical exercises at the end of each chapter, aimed towards practitioners.... [The] present book provides a gentler introduction for the beginning graduate student or nonspecialist practitioner."

― SIAM Review 

 

From the Back Cover

These Lecture Notes discuss concepts of `self-adaptivity' in the numerical solution of differential equations, with emphasis on Galerkin finite element methods. The key issues are a posteriori error estimation and it automatic mesh adaptation. Besides the traditional approach of energy-norm error control, a new duality-based technique, the Dual Weighted Residual method for goal-oriented error estimation, is discussed in detail. This method aims at economical computation of arbitrary quantities of physical interest by properly adapting the computational mesh. This is typically required in the design cycles of technical applications. For example, the drag coefficient of a body immersed in a viscous flow is computed, then it is minimized by varying certain control parameters, and finally the stability of the resulting flow is investigated by solving an eigenvalue problem. `Goal-oriented' adaptivity is designed to achieve these tasks with minimal cost.
At the end of each chapter some exercises are posed in order to assist the interested reader in better understanding the concepts presented. Solutions and accompanying remarks are given in the Appendix. For the practical exercises, sample programs are provided via internet.

"About this title" may belong to another edition of this title.

(No Available Copies)

Search Books:



Create a Want

Can't find the book you're looking for? We'll keep searching for you. If one of our booksellers adds it to AbeBooks, we'll let you know!

Create a Want

Other Popular Editions of the Same Title

9783764370091: Adaptive Finite Element Methods for Differential Equations (Lectures in Mathematics. ETH Zürich)

Featured Edition

ISBN 10:  3764370092 ISBN 13:  9783764370091
Publisher: Birkhäuser, 2003
Softcover