An emerging field in statistics, distributional regression facilitates the modelling of the complete conditional distribution, rather than just the mean. This book introduces generalized additive models for location, scale and shape (GAMLSS) – one of the most important classes of distributional regression. Taking a broad perspective, the authors consider penalized likelihood inference, Bayesian inference, and boosting as potential ways of estimating models and illustrate their usage in complex applications. Written by the international team who developed GAMLSS, the text's focus on practical questions and problems sets it apart. Case studies demonstrate how researchers in statistics and other data-rich disciplines can use the model in their work, exploring examples ranging from fetal ultrasounds to social media performance metrics. The R code and data sets for the case studies are available on the book's companion website, allowing for replication and further study.
"synopsis" may belong to another edition of this title.
Mikis D. Stasinopoulos is Professor of Statistics at the School of Computing and Mathematical Sciences, University of Greenwich. He is, together with Professor Bob Rigby, coauthor of the original Royal Statistical Society article on GAMLSS. He has also coauthored three books on distributional regression, and in particular the theoretical and computational aspects of the GAMLSS framework.
Thomas Kneib is a Professor of Statistics at the University of Göttingen, Germany, where he is the Spokesperson of the interdisciplinary Centre for Statistics and Vice-Spokesperson of the Campus Institute Data Science. His main research interests include semiparametric regression, spatial statistics, and distributional regression.
Nadja Klein is Emmy Noether Research Group Leader in Statistics and Data Science and Professor for Uncertainty Quantification and Statistical Learning at TU Dortmund University and the Research Center Trustworthy Data Science and Security. Nadja is member of the Junge Akademie and associate editor for 'Biometrics,' 'JABES,' and 'Dependence Modeling.' Her. Her research interests include Bayesian methods, statistical and machine learning, and spatial statistics.
Andreas Mayr is a Professor at the Institute for Medical Biometry, Informatics, and Epidemiology at the University of Bonn, Germany. He has authored more than 100 research articles both in statistics as well as medical research and is currently Editor of the 'Statistical Modelling Journal,' Associate Editor of the 'International Journal of Biostatistics,' and Editorial Board Member of the 'International Journal of Eating Disorders.'
Gillian Z. Heller is Professor of Biostatistics at the NHMRC Clinical Trials Centre, University of Sydney. She has coauthored four books in the regression modelling area, the first directed towards actuarial applications of the generalized linear model, and the remaining three focussing on distributional regression, in particular the GAMLSS framework.
"About this title" may belong to another edition of this title.
Seller: Friends of the Multnomah County Library, Portland, OR, U.S.A.
Hardcover. Condition: Very Good. No dustjacket as issued. Very minor shelf wear, including a small dent to back cover. Binding tight. All pages intact and free of marks. Seller Inventory # 052425k07
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 46666493-n
Seller: Grand Eagle Retail, Bensenville, IL, U.S.A.
Hardcover. Condition: new. Hardcover. An emerging field in statistics, distributional regression facilitates the modelling of the complete conditional distribution, rather than just the mean. This book introduces generalized additive models for location, scale and shape (GAMLSS) one of the most important classes of distributional regression. Taking a broad perspective, the authors consider penalized likelihood inference, Bayesian inference, and boosting as potential ways of estimating models and illustrate their usage in complex applications. Written by the international team who developed GAMLSS, the text's focus on practical questions and problems sets it apart. Case studies demonstrate how researchers in statistics and other data-rich disciplines can use the model in their work, exploring examples ranging from fetal ultrasounds to social media performance metrics. The R code and data sets for the case studies are available on the book's companion website, allowing for replication and further study. This text provides a state-of-the-art treatment of distributional regression, accompanied by real-world examples from diverse areas of application. Maximum likelihood, Bayesian and machine learning approaches are covered in-depth and contrasted, providing an integrated perspective on GAMLSS for researchers in statistics and other data-rich fields. This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9781009410069
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 46666493
Seller: PBShop.store US, Wood Dale, IL, U.S.A.
HRD. Condition: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L1-9781009410069
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
HRD. Condition: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L1-9781009410069
Quantity: Over 20 available
Seller: Revaluation Books, Exeter, United Kingdom
Hardcover. Condition: Brand New. 299 pages. 10.00x7.00x0.75 inches. In Stock. This item is printed on demand. Seller Inventory # __1009410067
Quantity: 1 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9781009410069_new
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 46666493-n
Quantity: Over 20 available
Seller: Rarewaves.com USA, London, LONDO, United Kingdom
Hardback. Condition: New. 1st. An emerging field in statistics, distributional regression facilitates the modelling of the complete conditional distribution, rather than just the mean. This book introduces generalized additive models for location, scale and shape (GAMLSS) - one of the most important classes of distributional regression. Taking a broad perspective, the authors consider penalized likelihood inference, Bayesian inference, and boosting as potential ways of estimating models and illustrate their usage in complex applications. Written by the international team who developed GAMLSS, the text's focus on practical questions and problems sets it apart. Case studies demonstrate how researchers in statistics and other data-rich disciplines can use the model in their work, exploring examples ranging from fetal ultrasounds to social media performance metrics. The R code and data sets for the case studies are available on the book's companion website, allowing for replication and further study. Seller Inventory # LU-9781009410069
Quantity: Over 20 available