Computational Study of Separating Flow in a Planar Subsonic Diffuser

9781287241317: Computational Study of Separating Flow in a Planar Subsonic Diffuser
View all copies of this ISBN edition:

A computational study of the separated flow through a 2-D asymmetric subsonic diffuser has been performed. The Wind Computational Fluid Dynamics code is used to predict the separation and reattachment behavior for an incompressible diffuser flow. The diffuser inlet flow is a two-dimensional, turbulent, and fully-developed channel flow with a Reynolds number of 20,000 based on the centerline velocity and the channel height. Wind solutions computed with the Menter SST, Chien k-epsilon, Spalart-Allmaras and Explicit Algebraic Reynolds Stress turbulence models are compared with experimentally measured velocity profiles and skin friction along the upper and lower walls. In addition to the turbulence model study, the effects of grid resolution and use of wall functions were investigated. The grid studies varied the number of grid points across the diffuser and varied the initial wall spacing from y(sup +) = 0.2 to 60. The wall function study assessed the applicability of wall functions for analysis of separated flow. The SST and Explicit Algebraic Stress models provide the best agreement with experimental data, and it is recommended wall functions should only be used with a high level of caution.

"synopsis" may belong to another edition of this title.

(No Available Copies)

Search Books:

Create a Want

If you know the book but cannot find it on AbeBooks, we can automatically search for it on your behalf as new inventory is added. If it is added to AbeBooks by one of our member booksellers, we will notify you!

Create a Want