Unicity of Meromorphic Mappings (Advances in Complex Analysis and Its Applications, 1) - Hardcover

Pei-Chu Hu; Ping Li; Chung-Chun Yang

 
9781402012198: Unicity of Meromorphic Mappings (Advances in Complex Analysis and Its Applications, 1)

Synopsis

For a given meromorphic function I(z) and an arbitrary value a, Nevanlinna's value distribution theory, which can be derived from the well known Poisson-Jensen for­ mula, deals with relationships between the growth of the function and quantitative estimations of the roots of the equation: 1 (z) - a = O. In the 1920s as an application of the celebrated Nevanlinna's value distribution theory of meromorphic functions, R. Nevanlinna [188] himself proved that for two nonconstant meromorphic func­ tions I, 9 and five distinctive values ai (i = 1,2,3,4,5) in the extended plane, if 1 1- (ai) = g-l(ai) 1M (ignoring multiplicities) for i = 1,2,3,4,5, then 1 = g. Fur­ 1 thermore, if 1- (ai) = g-l(ai) CM (counting multiplicities) for i = 1,2,3 and 4, then 1 = L(g), where L denotes a suitable Mobius transformation. Then in the 19708, F. Gross and C. C. Yang started to study the similar but more general questions of two functions that share sets of values. For instance, they proved that if 1 and 9 are two nonconstant entire functions and 8 , 82 and 83 are three distinctive finite sets such 1 1 that 1- (8 ) = g-1(8 ) CM for i = 1,2,3, then 1 = g.

"synopsis" may belong to another edition of this title.

Other Popular Editions of the Same Title

9781441952431: Unicity of Meromorphic Mappings (Advances in Complex Analysis and Its Applications)

Featured Edition

ISBN 10:  1441952438 ISBN 13:  9781441952431
Publisher: Springer, 2011
Softcover