In this new textbook, acclaimed author John Stillwell presents a lucid introduction to Lie theory suitable for junior and senior level undergraduates. In order to achieve this, he focuses on the so-called "classical groups'' that capture the symmetries of real, complex, and quaternion spaces. These symmetry groups may be represented by matrices, which allows them to be studied by elementary methods from calculus and linear algebra.

This naive approach to Lie theory is originally due to von Neumann, and it is now possible to streamline it by using standard results of undergraduate mathematics. To compensate for the limitations of the naive approach, end of chapter discussions introduce important results beyond those proved in the book, as part of an informal sketch of Lie theory and its history.

John Stillwell is Professor of Mathematics at the University of San Francisco. He is the author of several highly regarded books published by Springer, including The Four Pillars of Geometry (2005), Elements of Number Theory (2003), Mathematics and Its History (Second Edition, 2002), Numbers and Geometry (1998) and Elements of Algebra (1994).

*"synopsis" may belong to another edition of this title.*

From the reviews:

“An excellent read. In just 200 pages the author explains what Lie groups and algebras actually are. ... An undergraduate who has taken the calculus series, had a course in linear algebra that discusses matrices, has some knowledge of complex variables and some understanding of group theory should easily follow the material to this point. ... the best book to get you going.” (Philosophy, Religion and Science Book Reviews, bookinspections.wordpress.com, July, 2013)

“There are several aspects of Stillwell’s book that I particularly appreciate. He keeps the sections very short and straightforward, with a few exercises at the end of each to cement understanding. The theory is built up in small bites. He develops an intuition for what is happening by starting with very simple examples and building toward more complicated groups. ... In short, if you want to teach an undergraduate course on Lie theory, I recommend Stillwell.”(David Bressoud, The UMAP Journal, Vol. 31 (4), 2010)

"Lie theory, basically the study of continuous symmetry, certainly occupies a central position in modern mathematics ... . In Naive Lie Theory, Stillwell (Univ. of San Franciso) concentrates on the simplest examples and stops short of representation theory ... . Summing Up: Recommended. Upper-division undergraduates and graduate students." (D. V. Feldman, Choice, Vol. 46 (9), May, 2009)

"This book provides an introduction to Lie groups and Lie algebras suitable for undergraduates having no more background than calculus and linear algebra. ... Each chapter concludes with a lively and informative account of the history behind the mathematics in it. The author writes in a clear and engaging style ... . The book is a welcome addition to the literature in representation theory." (William M. McGovern, Mathematical Reviews, Issue 2009 g)

"This is a beautifully clear exposition of the main points of Lie theory, aimed at undergraduates who have ... calculus and linear algebra. ... The book is well equipped with examples ... . The book has a very strong geometric flavor, both in the use of rotation groups and in the connection between Lie algebras and Lie groups." (Allen Stenger, The Mathematical Association of America, October, 2008)

*"About this title" may belong to another edition of this title.*

ISBN 10: 144192681X
ISBN 13: 9781441926814

New
Paperback
First Edition
Quantity Available: 2

Seller

Rating

**Book Description **Paperback. Book Condition: New. New. Softcover book, 1st Edition. (Read Description Before Buying), This is an international Edition. Black and White Book. ISBN or covers May Be Different From US Edition. Book may have Restricted Sales Disclaimer Wordings printed on cover. Books May Be Shipped From Overseas as per stock status. Bookseller Inventory # 756944

More Information About This Seller | Ask Bookseller a Question

ISBN 10: 144192681X
ISBN 13: 9781441926814

New
Paperback
Quantity Available: 5

Seller

Rating

**Book Description **Paperback. Book Condition: New. Softcover Book, Condition: New. 1st Edition. [Please Read Carefully Before Buying], This Is An International Edition. Printed In Black and White. 231 pages, Book Cover And ISBN No May Be Different From US Edition. Restricted Sales Disclaimer Wordings Not For Sales In USA And Canada May Be Printed On The Cover Of The Book. Standard Shipping 7-14 Business Days. Expedited Shiping 4-8 Business Days. ***WE DO NOT ENTERTAIN BULK ORDERS.*** The Books May Be Ship From Overseas For Inventory Purpose. Bookseller Inventory # 314647

More Information About This Seller | Ask Bookseller a Question

ISBN 10: 144192681X
ISBN 13: 9781441926814

New
Paperback
Quantity Available: 1

Seller

Rating

**Book Description **Paperback. Book Condition: New. New Softcover International Edition, Printed in Black and White, Different ISBN, Same Content As US edition, Book Cover may be Different, in English Language. Bookseller Inventory # 9742

More Information About This Seller | Ask Bookseller a Question

Published by
Springer, India
(2011)

ISBN 10: 144192681X
ISBN 13: 9781441926814

New
Soft cover
Quantity Available: 1

Seller

Rating

**Book Description **Springer, India, 2011. Soft cover. Book Condition: Brand New. 12mo - over 6¾ - 7¾" tall. International edition Brand New SOFT COVER standard delivery. Bookseller Inventory # 001806

More Information About This Seller | Ask Bookseller a Question

Published by
Springer-Verlag New York Inc., United States
(2010)

ISBN 10: 144192681X
ISBN 13: 9781441926814

New
Paperback
Quantity Available: 10

Seller

Rating

**Book Description **Springer-Verlag New York Inc., United States, 2010. Paperback. Book Condition: New. 1st ed. Softcover of orig. ed. 2008. 229 x 152 mm. Language: English . This book usually ship within 10-15 business days and we will endeavor to dispatch orders quicker than this where possible. Brand New Book. In this new textbook, acclaimed author John Stillwell presents a lucid introduction to Lie theory suitable for junior and senior level undergraduates. In order to achieve this, he focuses on the so-called classical groups that capture the symmetries of real, complex, and quaternion spaces. These symmetry groups may be represented by matrices, which allows them to be studied by elementary methods from calculus and linear algebra. This naive approach to Lie theory is originally due to von Neumann, and it is now possible to streamline it by using standard results of undergraduate mathematics. To compensate for the limitations of the naive approach, end of chapter discussions introduce important results beyond those proved in the book, as part of an informal sketch of Lie theory and its history. John Stillwell is Professor of Mathematics at the University of San Francisco. He is the author of several highly regarded books published by Springer, including The Four Pillars of Geometry (2005), Elements of Number Theory (2003), Mathematics and Its History (Second Edition, 2002), Numbers and Geometry (1998) and Elements of Algebra (1994). Bookseller Inventory # LIE9781441926814

More Information About This Seller | Ask Bookseller a Question

Published by
Springer New York 2010-12-01, New York, NY
(2010)

ISBN 10: 144192681X
ISBN 13: 9781441926814

New
paperback
Quantity Available: 10

Seller

Rating

**Book Description **Springer New York 2010-12-01, New York, NY, 2010. paperback. Book Condition: New. Bookseller Inventory # 9781441926814

More Information About This Seller | Ask Bookseller a Question

Published by
Springer
(2009)

ISBN 10: 144192681X
ISBN 13: 9781441926814

New
Paperback
Quantity Available: 1

Seller

Rating

**Book Description **Springer, 2009. Paperback. Book Condition: New. book. Bookseller Inventory # 144192681X

More Information About This Seller | Ask Bookseller a Question

Published by
Springer-Verlag New York Inc., United States
(2010)

ISBN 10: 144192681X
ISBN 13: 9781441926814

New
Paperback
Quantity Available: 10

Seller

Rating

**Book Description **Springer-Verlag New York Inc., United States, 2010. Paperback. Book Condition: New. 1st ed. Softcover of orig. ed. 2008. 229 x 152 mm. Language: English . Brand New Book ***** Print on Demand *****. In this new textbook, acclaimed author John Stillwell presents a lucid introduction to Lie theory suitable for junior and senior level undergraduates. In order to achieve this, he focuses on the so-called classical groups that capture the symmetries of real, complex, and quaternion spaces. These symmetry groups may be represented by matrices, which allows them to be studied by elementary methods from calculus and linear algebra. This naive approach to Lie theory is originally due to von Neumann, and it is now possible to streamline it by using standard results of undergraduate mathematics. To compensate for the limitations of the naive approach, end of chapter discussions introduce important results beyond those proved in the book, as part of an informal sketch of Lie theory and its history. John Stillwell is Professor of Mathematics at the University of San Francisco. He is the author of several highly regarded books published by Springer, including The Four Pillars of Geometry (2005), Elements of Number Theory (2003), Mathematics and Its History (Second Edition, 2002), Numbers and Geometry (1998) and Elements of Algebra (1994). Bookseller Inventory # AAV9781441926814

More Information About This Seller | Ask Bookseller a Question

Published by
Springer-Verlag New York Inc., United States
(2010)

ISBN 10: 144192681X
ISBN 13: 9781441926814

New
Paperback
Quantity Available: 10

Seller

Rating

**Book Description **Springer-Verlag New York Inc., United States, 2010. Paperback. Book Condition: New. 1st ed. Softcover of orig. ed. 2008. 229 x 152 mm. Language: English Brand New Book ***** Print on Demand *****.In this new textbook, acclaimed author John Stillwell presents a lucid introduction to Lie theory suitable for junior and senior level undergraduates. In order to achieve this, he focuses on the so-called classical groups that capture the symmetries of real, complex, and quaternion spaces. These symmetry groups may be represented by matrices, which allows them to be studied by elementary methods from calculus and linear algebra. This naive approach to Lie theory is originally due to von Neumann, and it is now possible to streamline it by using standard results of undergraduate mathematics. To compensate for the limitations of the naive approach, end of chapter discussions introduce important results beyond those proved in the book, as part of an informal sketch of Lie theory and its history. John Stillwell is Professor of Mathematics at the University of San Francisco. He is the author of several highly regarded books published by Springer, including The Four Pillars of Geometry (2005), Elements of Number Theory (2003), Mathematics and Its History (Second Edition, 2002), Numbers and Geometry (1998) and Elements of Algebra (1994). Bookseller Inventory # AAV9781441926814

More Information About This Seller | Ask Bookseller a Question

Published by
Springer-Verlag New York Inc.
(2010)

ISBN 10: 144192681X
ISBN 13: 9781441926814

New
Quantity Available: > 20

Seller

Rating

**Book Description **Springer-Verlag New York Inc., 2010. PAP. Book Condition: New. New Book. Shipped from US within 10 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bookseller Inventory # IQ-9781441926814

More Information About This Seller | Ask Bookseller a Question