Design of Very High-Frequency Multirate Switched-Capacitor Circuits presents the theory and the corresponding CMOS implementation of the novel multirate sampled-data analog interpolation technique which has its great potential on very high-frequency analog frond-end filtering due to its inherent dual advantage of reducing the speed of data-converters and DSP core together with the specification relaxation of the post continuous-time filtering. This technique completely eliminates the traditional phenomenon of sampled-and-hold frequency-shaping at the lower input sampling rate. Also, in order to tackle physical IC imperfections at very high frequency, the state-of-the-art circuit design and layout techniques for high-speed Switched-Capacitor (SC) circuits are comprehensively discussed:
-Optimum circuit architecture tradeoff analysis
-Simple speed and power trade-off analysis of active elements
-High-order filtering response accuracy with respect to capacitor-ratio mismatches
-Time-interleaved effect with respect to gain and offset mismatch
-Time-interleaved effect with respect to timing-skew and random jitter with non-uniformly holding
-Stage noise analysis and allocation scheme
-Substrate and supply noise reduction
-Gain-and offset-compensation techniques
-High-bandwidth low-power amplifier design and layout
-Very low timing-skew multiphase generation
Two tailor-made optimum design examples in CMOS are presented. The first one achieves a 3-stage 8-fold SC interpolating filter with 5.5MHz bandwidth and 108MHz output sampling rate for a NTSC/PAL CCIR 601 digital video at 3 V. Another is a 15-tap 57MHz SC FIR bandpass interpolating filter with 4-fold sampling rate increase to 320MHz and the first-time embedded frequency band up-translation for DDFS system at 2.5V. The corresponding chip prototype achieves so far the highest operating frequency, highest filter order and highest center frequency with highest dynamic range under the lowest supply voltage when compared to the previously reported high-frequency SC filters in CMOS.
"synopsis" may belong to another edition of this title.
US$ 33.16 shipping from United Kingdom to U.S.A.
Destination, rates & speedsSeller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar2411530295377
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Design of Very High-Frequency Multirate Switched-Capacitor Circuits presents the theory and the corresponding CMOS implementation of the novel multirate sampled-data analog interpolation technique which has its great potential on very high-frequency analog frond-end filtering due to its inherent dual advantage of reducing the speed of data-converters and DSP core together with the specification relaxation of the post continuous-time filtering. This technique completely eliminates the traditional phenomenon of sampled-and-hold frequency-shaping at the lower input sampling rate. Also, in order to tackle physical IC imperfections at very high frequency, the state-of-the-art circuit design and layout techniques for high-speed Switched-Capacitor (SC) circuits are comprehensively discussed:-Optimum circuit architecture tradeoff analysis-Simple speed and power trade-off analysis of active elements-High-order filtering response accuracy with respect to capacitor-ratio mismatches-Time-interleaved effect with respect to gain and offset mismatch-Time-interleaved effect with respect to timing-skew and random jitter with non-uniformly holding-Stage noise analysis and allocation scheme-Substrate and supply noise reduction-Gain-and offset-compensation techniques-High-bandwidth low-power amplifier design and layout-Very low timing-skew multiphase generationTwo tailor-made optimum design examples in CMOS are presented. The first one achieves a 3-stage 8-fold SC interpolating filter with 5.5MHz bandwidth and 108MHz output sampling rate for a NTSC/PAL CCIR 601 digital video at 3 V. Another is a 15-tap 57MHz SC FIR bandpass interpolating filter with 4-fold sampling rate increase to 320MHz and the first-time embedded frequency band up-translation for DDFS system at 2.5V. The corresponding chip prototype achieves so far the highest operating frequency, highest filter order and highest center frequency with highest dynamic range under the lowest supply voltage when compared to the previously reported high-frequency SC filters in CMOS. 260 pp. Englisch. Seller Inventory # 9781441938671
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - Design of Very High-Frequency Multirate Switched-Capacitor Circuits presents the theory and the corresponding CMOS implementation of the novel multirate sampled-data analog interpolation technique which has its great potential on very high-frequency analog frond-end filtering due to its inherent dual advantage of reducing the speed of data-converters and DSP core together with the specification relaxation of the post continuous-time filtering. This technique completely eliminates the traditional phenomenon of sampled-and-hold frequency-shaping at the lower input sampling rate. Also, in order to tackle physical IC imperfections at very high frequency, the state-of-the-art circuit design and layout techniques for high-speed Switched-Capacitor (SC) circuits are comprehensively discussed:-Optimum circuit architecture tradeoff analysis-Simple speed and power trade-off analysis of active elements-High-order filtering response accuracy with respect to capacitor-ratio mismatches-Time-interleaved effect with respect to gain and offset mismatch-Time-interleaved effect with respect to timing-skew and random jitter with non-uniformly holding-Stage noise analysis and allocation scheme-Substrate and supply noise reduction-Gain-and offset-compensation techniques-High-bandwidth low-power amplifier design and layout-Very low timing-skew multiphase generationTwo tailor-made optimum design examples in CMOS are presented. The first one achieves a 3-stage 8-fold SC interpolating filter with 5.5MHz bandwidth and 108MHz output sampling rate for a NTSC/PAL CCIR 601 digital video at 3 V. Another is a 15-tap 57MHz SC FIR bandpass interpolating filter with 4-fold sampling rate increase to 320MHz and the first-time embedded frequency band up-translation for DDFS system at 2.5V. The corresponding chip prototype achieves so far the highest operating frequency, highest filter order and highest center frequency with highestdynamic range under the lowest supply voltage when compared to the previously reported high-frequency SC filters in CMOS. Seller Inventory # 9781441938671
Quantity: 1 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Design of state-of-the-art and most complex SC Analog Filter in CMOSDetailed circuit and layout optimization technique for very high-frequency CMOS SC circuitsComprehensive signal spectrum and noise analysis with timing-mismatch and non-uni. Seller Inventory # 4174239
Quantity: Over 20 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 260. Seller Inventory # 263100331
Quantity: 4 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 260 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Seller Inventory # 5828980
Quantity: 4 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 227 pages. 9.00x6.00x0.50 inches. In Stock. Seller Inventory # x-1441938672
Quantity: 2 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Paperback / softback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 450. Seller Inventory # C9781441938671
Quantity: Over 20 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND pp. 260. Seller Inventory # 183100321
Quantity: 4 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9781441938671_new
Quantity: Over 20 available