Engaging and accessible, this book teaches readers how to use inferential statistical thinking to check their assumptions, assess evidence about their beliefs, and avoid overinterpreting results that may look more promising than they really are. It provides step-by-step guidance for using both classical (frequentist) and Bayesian approaches to inference. Statistical techniques covered side by side from both frequentist and Bayesian approaches include hypothesis testing, replication, analysis of variance, calculation of effect sizes, regression, time series analysis, and more. Students also get a complete introduction to the open-source R programming language and its key packages. Throughout the text, simple commands in R demonstrate essential data analysis skills using real-data examples. The companion website provides annotated R code for the book's examples, in-class exercises, teaching notes, and slide decks.
Pedagogical Features
*Playful, conversational style and gradual approach; suitable for students without strong math backgrounds.
*End-of-chapter exercises based on real data supplied in the free R package.
*Technical explanation and equation/output boxes.
*Appendices on how to install R and work with the sample datasets.
"synopsis" may belong to another edition of this title.
Jeffrey M. Stanton, PhD, is Associate Provost for Academic Affairs and Professor in the School of Information Studies at Syracuse University. Dr. Stanton's interests center on research methods, psychometrics, and statistics, with a particular focus on self-report techniques, such as surveys. He has conducted research on a variety of substantive topics in organizational psychology, including the interactions of people and technology in institutional contexts. He is the author of numerous scholarly articles and several books, including Information Nation: Education and Careers in the Emerging Information Professions and The Visible Employee: Using Workplace Monitoring and Surveillance to Protect Information Assets--Without Compromising Employee Privacy or Trust. Dr. Stanton’s background also includes more than a decade of experience in business, both in established firms and startup companies.
"About this title" may belong to another edition of this title.
Seller: World of Books (was SecondSale), Montgomery, IL, U.S.A.
Condition: Very Good. Item in very good condition! Textbooks may not include supplemental items i.e. CDs, access codes etc. Seller Inventory # 00099006073
Seller: AwesomeBooks, Wallingford, United Kingdom
paperback. Condition: Very Good. Reasoning with Data: An Introduction to Traditional and Bayesian Statistics Using R This book is in very good condition and will be shipped within 24 hours of ordering. The cover may have some limited signs of wear but the pages are clean, intact and the spine remains undamaged. This book has clearly been well maintained and looked after thus far. Money back guarantee if you are not satisfied. See all our books here, order more than 1 book and get discounted shipping. . Seller Inventory # 7719-9781462530267
Quantity: 1 available
Seller: Books From California, Simi Valley, CA, U.S.A.
paperback. Condition: Very Good. Seller Inventory # mon0003793372
Seller: Bahamut Media, Reading, United Kingdom
paperback. Condition: Very Good. Shipped within 24 hours from our UK warehouse. Clean, undamaged book with no damage to pages and minimal wear to the cover. Spine still tight, in very good condition. Remember if you are not happy, you are covered by our 100% money back guarantee. Seller Inventory # 6545-9781462530267
Quantity: 1 available
Seller: Textbooks_Source, Columbia, MO, U.S.A.
Paperback. Condition: Good. 1st Edition. Ships in a BOX from Central Missouri! May not include working access code. Will not include dust jacket. Has used sticker(s) and some writing or highlighting. UPS shipping for most packages, (Priority Mail for AK/HI/APO/PO Boxes). Seller Inventory # 002117419U
Seller: Books From California, Simi Valley, CA, U.S.A.
paperback. Condition: Fine. Seller Inventory # mon0003792585
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 28748938-n
Seller: Textbooks_Source, Columbia, MO, U.S.A.
Paperback. Condition: New. 1st Edition. Ships in a BOX from Central Missouri! UPS shipping for most packages, (Priority Mail for AK/HI/APO/PO Boxes). Seller Inventory # 002117419N
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 28748938
Seller: Grand Eagle Retail, Bensenville, IL, U.S.A.
Paperback. Condition: new. Paperback. Engaging and accessible, this book teaches readers how to use inferential statistical thinking to check their assumptions, assess evidence about their beliefs, and avoid overinterpreting results that may look more promising than they really are. It provides step-by-step guidance for using both classical (frequentist) and Bayesian approaches to inference. Statistical techniques covered side by side from both frequentist and Bayesian approaches include hypothesis testing, replication, analysis of variance, calculation of effect sizes, regression, time series analysis, and more. Students also get a complete introduction to the open-source R programming language and its key packages. Throughout the text, simple commands in R demonstrate essential data analysis skills using real-data examples. The companion website provides annotated R code for the book's examples, in-class exercises, teaching notes, and slide decks. Pedagogical Features *Playful, conversational style and gradual approach; suitable for students without strong math backgrounds. *End-of-chapter exercises based on real data supplied in the free R package. *Technical explanation and equation/output boxes. *Appendices on how to install R and work with the sample datasets. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9781462530267