At the turn of the twentieth century, the French mathematician Paul Painlevé and his students classified second order nonlinear ordinary differential equations with the property that the location of possible branch points and essential singularities of their solutions does not depend on initial conditions. It turned out that there are only six such equations (up to natural equivalence), which later became known as Painlevé I–VI. Although these equations were initially obtained answering a strictly mathematical question, they appeared later in an astonishing (and growing) range of applications, including, e.g., statistical physics, fluid mechanics, random matrices, and orthogonal polynomials. Actually, it is now becoming clear that the Painlevé transcendents (i.e., the solutions of the Painlevé equations) play the same role in nonlinear mathematical physics that the classical special functions, such as Airy and Bessel functions, play in linear physics. The explicit formulas relating the asymptotic behaviour of the classical special functions at different critical points play a crucial role in the applications of these functions. It is shown in this book that even though the six Painlevé equations are nonlinear, it is still possible, using a new technique called the Riemann-Hilbert formalism, to obtain analogous explicit formulas for the Painlevé transcendents. This striking fact, apparently unknown to Painlevé and his contemporaries, is the key ingredient for the remarkable applicability of these “nonlinear special functions”. The book describes in detail the Riemann-Hilbert method and emphasizes its close connection to classical monodromy theory of linear equations as well as to modern theory of integrable systems. In addition, the book contains an ample collection of material concerning the asymptotics of the Painlevé functions and their various applications, which makes it a good reference source for everyone working in the theory and applications of Painlevé equations and related areas.
"synopsis" may belong to another edition of this title.
Athanassios S. Fokas, Cambridge University, United Kingdom, Alexander R. Its, Indiana University-Purdue University Indianapolis, IN, Andrei A. Kapaev, and Victor Yu. Novokshenov, Russian Academy of Sciences, Ufa, Russia
"About this title" may belong to another edition of this title.
Seller: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Ireland
Condition: New. 2023. paperback. . . . . . Seller Inventory # V9781470475567
Quantity: Over 20 available
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
PAP. Condition: New. New Book. Shipped from UK. Established seller since 2000. Seller Inventory # FW-9781470475567
Quantity: 15 available
Seller: Kennys Bookstore, Olney, MD, U.S.A.
Condition: New. 2023. paperback. . . . . . Books ship from the US and Ireland. Seller Inventory # V9781470475567
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 553 pages. In Stock. Seller Inventory # __1470475561
Quantity: 2 available
Seller: Grand Eagle Retail, Bensenville, IL, U.S.A.
Paperback. Condition: new. Paperback. At the turn of the twentieth century, the French mathematician Paul Painleve and his students classified second order nonlinear ordinary differential equations with the property that the location of possible branch points and essential singularities of their solutions does not depend on initial conditions. It turned out that there are only six such equations (up to natural equivalence), which later became known as Painleve I-VI. Although these equations were initially obtained answering a strictly mathematical question, they appeared later in an astonishing (and growing) range of applications, including, e.g., statistical physics, fluid mechanics, random matrices, and orthogonal polynomials. Actually, it is now becoming clear that the Painleve transcendents (i.e., the solutions of the Painleve equations) play the same role in nonlinear mathematical physics that the classical special functions, such as Airy and Bessel functions, play in linear physics. The explicit formulas relating the asymptotic behaviour of the classical special functions at different critical points play a crucial role in the applications of these functions. It is shown in this book that even though the six Painleve equations are nonlinear, it is still possible, using a new technique called the Riemann-Hilbert formalism, to obtain analogous explicit formulas for the Painleve transcendents. This striking fact, apparently unknown to Painleve and his contemporaries, is the key ingredient for the remarkable applicability of these ``nonlinear special functions''. The book describes in detail the Riemann-Hilbert method and emphasizes its close connection to classical monodromy theory of linear equations as well as to modern theory of integrable systems. In addition, the book contains an ample collection of material concerning the asymptotics of the Painleve functions and their various applications, which makes it a good reference source for everyone working in the theory and applications of Painleve equations and related areas. Describes in detail the Riemann-Hilbert method and emphasizes its close connection to classical monodromy theory of linear equations as well as to modern theory of integrable systems. In addition, the book contains a collection of material concerning the asymptotics of the Painleve functions and their various applications. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9781470475567
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Seller Inventory # 395962017
Quantity: 3 available
Seller: Rarewaves.com USA, London, LONDO, United Kingdom
Paperback. Condition: New. At the turn of the twentieth century, the French mathematician Paul Painleve and his students classified second order nonlinear ordinary differential equations with the property that the location of possible branch points and essential singularities of their solutions does not depend on initial conditions. It turned out that there are only six such equations (up to natural equivalence), which later became known as Painleve I-VI. Although these equations were initially obtained answering a strictly mathematical question, they appeared later in an astonishing (and growing) range of applications, including, e.g., statistical physics, fluid mechanics, random matrices, and orthogonal polynomials. Actually, it is now becoming clear that the Painleve transcendents (i.e., the solutions of the Painleve equations) play the same role in nonlinear mathematical physics that the classical special functions, such as Airy and Bessel functions, play in linear physics. The explicit formulas relating the asymptotic behaviour of the classical special functions at different critical points play a crucial role in the applications of these functions. It is shown in this book that even though the six Painleve equations are nonlinear, it is still possible, using a new technique called the Riemann-Hilbert formalism, to obtain analogous explicit formulas for the Painleve transcendents. This striking fact, apparently unknown to Painleve and his contemporaries, is the key ingredient for the remarkable applicability of these ``nonlinear special functions''. The book describes in detail the Riemann-Hilbert method and emphasizes its close connection to classical monodromy theory of linear equations as well as to modern theory of integrable systems. In addition, the book contains an ample collection of material concerning the asymptotics of the Painleve functions and their various applications, which makes it a good reference source for everyone working in the theory and applications of Painleve equations and related areas. Seller Inventory # LU-9781470475567
Quantity: 13 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. Seller Inventory # 26401496446
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Paperback / softback. Condition: New. New copy - Usually dispatched within 4 working days. Seller Inventory # B9781470475567
Quantity: Over 20 available
Seller: moluna, Greven, Germany
Condition: New. Seller Inventory # 2148729812
Quantity: Over 20 available