Mathematical Algorithms for Linear Regression - Softcover

Späth, Helmuth

 
9781483246765: Mathematical Algorithms for Linear Regression

Synopsis

Mathematical Algorithms for Linear Regression discusses numerous fitting principles related to discrete linear approximations, corresponding numerical methods, and FORTRAN 77 subroutines. The book explains linear Lp regression, method of the lease squares, the Gaussian elimination method, the modified Gram-Schmidt method, the method of least absolute deviations, and the method of least maximum absolute deviation. The investigator can determine which observations can be classified as outliers (those with large errors) and which are not by using the fitting principle. The text describes the elimination of outliers and the selection of variables if too many or all of them are given by values. The clusterwise linear regression accounts if only a few of the relevant variables have been collected or are collectible, assuming that their number is small in relation to the number of observations. The book also examines linear Lp regression with nonnegative parameters, the Kuhn-Tucker conditions, the Householder transformations, and the branch-and-bound method. The text points out the method of least squares is mainly used for models with nonlinear parameters or for orthogonal distances. The book can serve and benefit mathematicians, students, and professor of calculus, statistics, or advanced mathematics.

"synopsis" may belong to another edition of this title.

Other Popular Editions of the Same Title

9780126564600: Mathematical Algorithms for Linear Regression (Computer Science and Scientific Computing)

Featured Edition

ISBN 10:  0126564604 ISBN 13:  9780126564600
Publisher: Academic Pr, 1992
Hardcover