Time Series Algorithms Recipes: Implement Machine Learning and Deep Learning Techniques with Python - Softcover

Kulkarni, Akshay R; Shivananda, Adarsha; Kulkarni, Anoosh

 
9781484289792: Time Series Algorithms Recipes: Implement Machine Learning and Deep Learning Techniques with Python

Synopsis

Chapter 1: Getting Started with Time Series.Chapter Goal: Exploring and analyzing the timeseries data, and preprocessing it, which includes feature engineering for model building.No of pages: 25Sub - Topics 1 Reading time series data2 Data cleaning3 EDA4 Trend5 Noise6 Seasonality7 Cyclicity8 Feature Engineering9 Stationarity

Chapter 2: Statistical Univariate ModellingChapter Goal: The fundamentals of time series forecasting with the use of statistical modelling methods like AR, MA, ARMA, ARIMA, etc. No of pages: 25Sub - Topics 1 AR2 MA3 ARMA4 ARIMA5 SARIMA6 AUTO ARIMA7 FBProphet

Chapter 3: Statistical Multivariate ModellingChapter Goal: implementing multivariate modelling techniques like HoltsWinter and SARIMAX.No of pages: 25Sub - Topics: 1 HoltsWinter 2 ARIMAX3 SARIMAX

Chapter 4: Machine Learning Regression-Based Forecasting.Chapter Goal: Building and comparing multiple classical ML Regression algorithms for timeseries forecasting.No of pages: 25Sub - Topics: 1 Random Forest2 Decision Tree3 Light GBM4 XGBoost5 SVM

Chapter 5: Forecasting Using Deep Learning.Chapter Goal: Implementing advanced concepts like deep learning for time series forecasting from scratch.No of pages: 25Sub - Topics: 1 LSTM 2 ANN3 MLP

"synopsis" may belong to another edition of this title.

Other Popular Editions of the Same Title

9781484289778: Time Series Algorithms Recipes: Implement Machine Learning and Deep Learning Techniques with Python

Featured Edition

ISBN 10:  1484289773 ISBN 13:  9781484289778
Publisher: Apress, 2022
Softcover