This exposition provides the state-of-the art on the differential geometry of hypersurfaces in real, complex, and quaternionic space forms. Special emphasis is placed on isoparametric and Dupin hypersurfaces in real space forms as well as Hopf hypersurfaces in complex space forms. The book is accessible to a reader who has completed a one-year graduate course in differential geometry. The text, including open problems and an extensive list of references, is an excellent resource for researchers in this area.
Geometry of Hypersurfaces begins with the basic theory of submanifolds in real space forms. Topics include shape operators, principal curvatures and foliations, tubes and parallel hypersurfaces, curvature spheres and focal submanifolds. The focus then turns to the theory of isoparametric hypersurfaces in spheres. Important examples and classification results are given, including the construction of isoparametric hypersurfaces based on representations of Clifford algebras. An in-depth treatment of Dupin hypersurfaces follows with results that are proved in the context of Lie sphere geometry as well as those that are obtained using standard methods of submanifold theory. Next comes a thorough treatment of the theory of real hypersurfaces in complex space forms. A central focus is a complete proof of the classification of Hopf hypersurfaces with constant principal curvatures due to Kimura and Berndt. The book concludes with the basic theory of real hypersurfaces in quaternionic space forms, including statements of the major classification results and directions for further research.
"synopsis" may belong to another edition of this title.
Thomas E. Cecil is professor of mathematics at the College of Holy Cross in Worcester, MA, USA. His primary research interests are in differential geometry, in particular, submanifolds.
Patrick J. Ryan is Emeritus professor of mathematical sciences at McMaster University in Hamilton, Ontario, Canada. His primary research interests are in Geometry, in particular, the characterization and classification of hypersurfaces in real and complex space forms.
"About this title" may belong to another edition of this title.
US$ 33.70 shipping from United Kingdom to U.S.A.
Destination, rates & speedsSeller: Fireside Bookshop, Stroud, GLOS, United Kingdom
Cloth/Laminated Boards. Condition: Very Good. Type: Book N.B. Secondhand POD copy. (MATHEMATICS). Seller Inventory # 300280
Quantity: 1 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 24316000-n
Quantity: Over 20 available
Seller: Best Price, Torrance, CA, U.S.A.
Condition: New. SUPER FAST SHIPPING. Seller Inventory # 9781493932450
Quantity: 2 available
Seller: Grand Eagle Retail, Mason, OH, U.S.A.
Hardcover. Condition: new. Hardcover. This exposition provides the state-of-the art on the differential geometry of hypersurfaces in real, complex, and quaternionic space forms. Special emphasis is placed on isoparametric and Dupin hypersurfaces in real space forms as well as Hopf hypersurfaces in complex space forms. The book is accessible to a reader who has completed a one-year graduate course in differential geometry. The text, including open problems and an extensive list of references, is an excellent resource for researchers in this area.Geometry of Hypersurfaces begins with the basic theory of submanifolds in real space forms. Topics include shape operators, principal curvatures and foliations, tubes and parallel hypersurfaces, curvature spheres and focal submanifolds. The focus then turns to the theory of isoparametric hypersurfaces in spheres. Important examples and classification results are given, including the construction of isoparametric hypersurfaces based on representations of Clifford algebras. An in-depth treatment of Dupin hypersurfaces follows with results that are proved in the context of Lie sphere geometry as well as those that are obtained using standard methods of submanifold theory. Next comes a thorough treatment of the theory of real hypersurfaces in complex space forms. A central focus is a complete proof of the classification of Hopf hypersurfaces with constant principal curvatures due to Kimura and Berndt. The book concludes with the basic theory of real hypersurfaces in quaternionic space forms, including statements of the major classification results and directions for further research. This exposition provides the state-of-the art on the differential geometry of hypersurfaces in real, complex, and quaternionic space forms. Special emphasis is placed on isoparametric and Dupin hypersurfaces in real space forms as well as Hopf hypersurfaces in complex space forms. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9781493932450
Quantity: 1 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar2716030185780
Quantity: Over 20 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 24316000
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9781493932450_new
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 24316000-n
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: As New. Unread book in perfect condition. Seller Inventory # 24316000
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This exposition provides the state-of-the art on the differential geometry of hypersurfaces in real, complex, and quaternionic space forms. Special emphasis is placed on isoparametric and Dupin hypersurfaces in real space forms as well as Hopf hypersurfaces in complex space forms. The book is accessible to a reader who has completed a one-year graduate course in differential geometry. The text, including open problems and an extensive list of references, is an excellent resource for researchers in this area.Geometry of Hypersurfaces begins with the basic theory of submanifolds in real space forms. Topics include shape operators, principal curvatures and foliations, tubes and parallel hypersurfaces, curvature spheres and focal submanifolds. The focus then turns to the theory of isoparametric hypersurfaces in spheres. Important examples and classification results are given, including the construction of isoparametric hypersurfaces based on representations of Clifford algebras. An in-depth treatment of Dupin hypersurfaces follows with results that are proved in the context of Lie sphere geometry as well as those that are obtained using standard methods of submanifold theory. Next comes a thorough treatment of the theory of real hypersurfaces in complex space forms. A central focus is a complete proof of the classification of Hopf hypersurfaces with constant principal curvatures due to Kimura and Berndt. The book concludes with the basic theory of real hypersurfaces in quaternionic space forms, including statements of the major classification results and directions for further research. 608 pp. Englisch. Seller Inventory # 9781493932450
Quantity: 2 available