This text focuses on the use of smoothing methods for developing and estimating differential equations following recent developments in functional data analysis and building on techniques described in Ramsay and Silverman (2005) Functional Data Analysis. The central concept of a dynamical system as a buffer that translates sudden changes in input into smooth controlled output responses has led to applications of previously analyzed data, opening up entirely new opportunities for dynamical systems. The technical level has been kept low so that those with little or no exposure to differential equations as modeling objects can be brought into this data analysis landscape. There are already many texts on the mathematical properties of ordinary differential equations, or dynamic models, and there is a large literature distributed over many fields on models for real world processes consisting of differential equations. However, a researcher interested in fitting such a model to data, or a statistician interested in the properties of differential equations estimated from data will find rather less to work with. This book fills that gap.
"synopsis" may belong to another edition of this title.
Jim Ramsay, PhD, is Professor Emeritus of Psychology and an Associate Member in the Department of Mathematics and Statistics at McGill University. He received his PhD from Princeton University in 1966 in quantitative psychology. He has been President of the Psychometric Society and the Statistical Society of Canada. He received the Gold Medal in 1998 for his contributions to psychometrics and functional data analysis and Honorary Membership in 2012 from the Statistical Society of Canada.
Giles Hooker, PhD, is Associate Professor of Biological Statistics and Computational Biology at Cornell University. In addition to differential equation models, he has published extensively on functional data analysis and uncertainty quantification in machine learning. Much of his methodological work is inspired by collaborations in ecology and citizen science data.
This text focuses on the use of smoothing methods for developing and estimating differential equations following recent developments in functional data analysis and building on techniques described in Ramsay and Silverman (2005) Functional Data Analysis. The central concept of a dynamical system as a buffer that translates sudden changes in input into smooth controlled output responses has led to applications of previously analyzed data, opening up entirely new opportunities for dynamical systems. The technical level has been kept low so that those with little or no exposure to differential equations as modeling objects can be brought into this data analysis landscape. There are already many texts on the mathematical properties of ordinary differential equations, or dynamic models, and there is a large literature distributed over many fields on models for real world processes consisting of differential equations. However, a researcher interested in fitting such amodel to data, or a statistician interested in the properties of differential equations estimated from data will find rather less to work with. This book fills that gap.
Giles Hooker, PhD, is Associate Professor of Biological Statistics and Computational Biology at Cornell University. In addition to differential equation models, he has published extensively on functional data analysis and uncertainty quantification in machine learning. Much of his methodological work is inspired by collaborations in ecology and citizen science data.
"About this title" may belong to another edition of this title.
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 33457680-n
Seller: Best Price, Torrance, CA, U.S.A.
Condition: New. SUPER FAST SHIPPING. Seller Inventory # 9781493984121
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar2716030188220
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 33457680
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9781493984121_new
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 33457680-n
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: As New. Unread book in perfect condition. Seller Inventory # 33457680
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This text focuses on the use of smoothing methods for developing and estimating differential equations following recent developments in functional data analysis and building on techniques described in Ramsay and Silverman (2005)Functional Data Analysis. The central concept of a dynamical system as a buffer that translates sudden changes in input into smooth controlled output responses has led to applications of previously analyzed data, opening up entirely new opportunities for dynamical systems. The technical level has been kept low so that those with little or no exposure to differential equations as modeling objects can be brought into this data analysis landscape. There are already many texts on the mathematical properties of ordinary differential equations, or dynamic models, and there is a large literature distributed over many fields on models for real world processes consisting of differential equations. However, a researcher interested in fitting such a model to data, or a statistician interested in the properties of differential equations estimated from data will find rather less to work with. This book fills that gap. 248 pp. Englisch. Seller Inventory # 9781493984121
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Offers an accessible text to those with little or no exposure to differential equations as modeling objects Updates and builds on techniques from the popular Functional Data Analysis (Ramsay and Silverman, 2005)Opens u. Seller Inventory # 447957957
Quantity: Over 20 available
Seller: preigu, Osnabrück, Germany
Taschenbuch. Condition: Neu. Dynamic Data Analysis | Modeling Data with Differential Equations | Giles Hooker (u. a.) | Taschenbuch | xvii | Englisch | 2018 | Springer US | EAN 9781493984121 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Seller Inventory # 114151915