Partial Update Least-Square Adaptive Filtering (Synthesis Lectures on Communications)

0 avg rating
( 0 ratings by Goodreads )
 
9781627052313: Partial Update Least-Square Adaptive Filtering (Synthesis Lectures on Communications)

Adaptive filters play an important role in the fields related to digital signal processing and communication, such as system identification, noise cancellation, channel equalization, and beamforming. In practical applications, the computational complexity of an adaptive filter is an important consideration. The Least Mean Square (LMS) algorithm is widely used because of its low computational complexity ($O(N)$) and simplicity in implementation. The least squares algorithms, such as Recursive Least Squares (RLS), Conjugate Gradient (CG), and Euclidean Direction Search (EDS), can converge faster and have lower steady-state mean square error (MSE) than LMS. However, their high computational complexity ($O(N^2)$) makes them unsuitable for many real-time applications. A well-known approach to controlling computational complexity is applying partial update (PU) method to adaptive filters. A partial update method can reduce the adaptive algorithm complexity by updating part of the weight vector instead of the entire vector or by updating part of the time. In the literature, there are only a few analyses of these partial update adaptive filter algorithms. Most analyses are based on partial update LMS and its variants. Only a few papers have addressed partial update RLS and Affine Projection (AP). Therefore, analyses for PU least-squares adaptive filter algorithms are necessary and meaningful.

This monograph mostly focuses on the analyses of the partial update least-squares adaptive filter algorithms. Basic partial update methods are applied to adaptive filter algorithms including Least Squares CMA (LSCMA), EDS, and CG. The PU methods are also applied to CMA1-2 and NCMA to compare with the performance of the LSCMA. Mathematical derivation and performance analysis are provided including convergence condition, steady-state mean and mean-square performance for a time-invariant system. The steady-state mean and mean-square performance are also presented for a time-varying system. Computational complexity is calculated for each adaptive filter algorithm. Numerical examples are shown to compare the computational complexity of the PU adaptive filters with the full-update filters. Computer simulation examples, including system identification and channel equalization, are used to demonstrate the mathematical analysis and show the performance of PU adaptive filter algorithms. They also show the convergence performance of PU adaptive filters. The performance is compared between the original adaptive filter algorithms and different partial-update methods. The performance is also compared among similar PU least-squares adaptive filter algorithms, such as PU RLS, PU CG, and PU EDS. In addition to the generic applications of system identification and channel equalization, two special applications of using partial update adaptive filters are also presented. One application uses PU adaptive filters to detect Global System for Mobile Communication (GSM) signals in a local GSM system using the Open Base Transceiver Station (OpenBTS) and Asterisk Private Branch Exchange (PBX). The other application uses PU adaptive filters to do image compression in a system combining hyperspectral image compression and classification.

Table of Contents: Introduction / Background / Partial Update CMA-based Algorithms for Adaptive Filtering / Partial-Update CG Algorithms for Adaptive Filtering / Partial-Update EDS Algorithms for Adaptive Filtering / Special Applications of Partial-Update Adaptive Filters / Bibliography / Authors' Biographies

"synopsis" may belong to another edition of this title.

About the Author:

University of Arizona

"About this title" may belong to another edition of this title.

Top Search Results from the AbeBooks Marketplace

1.

Bei Xie
Published by Morgan and Claypool Publishers (2014)
ISBN 10: 1627052313 ISBN 13: 9781627052313
New Quantity Available: > 20
Print on Demand
Seller:
Pbshop
(Wood Dale, IL, U.S.A.)
Rating
[?]

Book Description Morgan and Claypool Publishers, 2014. PAP. Book Condition: New. New Book. Shipped from US within 10 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bookseller Inventory # IQ-9781627052313

More Information About This Seller | Ask Bookseller a Question

Buy New
US$ 34.46
Convert Currency

Add to Basket

Shipping: US$ 3.99
Within U.S.A.
Destination, Rates & Speeds

2.

Bei Xie, Tamal Bose
Published by Morgan Claypool Publishers, United States (2014)
ISBN 10: 1627052313 ISBN 13: 9781627052313
New Paperback Quantity Available: 1
Seller:
The Book Depository US
(London, United Kingdom)
Rating
[?]

Book Description Morgan Claypool Publishers, United States, 2014. Paperback. Book Condition: New. Language: English . Brand New Book. Adaptive filters play an important role in the fields related to digital signal processing and communication, such as system identification, noise cancellation, channel equalization, and beamforming. In practical applications, the computational complexity of an adaptive filter is an important consideration. The Least Mean Square (LMS) algorithm is widely used because of its low computational complexity ($O(N)$) and simplicity in implementation. The least squares algorithms, such as Recursive Least Squares (RLS), Conjugate Gradient (CG), and Euclidean Direction Search (EDS), can converge faster and have lower steady-state mean square error (MSE) than LMS. However, their high computational complexity ($O(N^2)$) makes them unsuitable for many real-time applications. A well-known approach to controlling computational complexity is applying partial update (PU) method to adaptive filters. A partial update method can reduce the adaptive algorithm complexity by updating part of the weight vector instead of the entire vector or by updating part of the time. In the literature, there are only a few analyses of these partial update adaptive filter algorithms. Most analyses are based on partial update LMS and its variants. Only a few papers have addressed partial update RLS and Affine Projection (AP). Therefore, analyses for PU least-squares adaptive filter algorithms are necessary and meaningful.This monograph mostly focuses on the analyses of the partial update least-squares adaptive filter algorithms. Basic partial update methods are applied to adaptive filter algorithms including Least Squares CMA (LSCMA), EDS, and CG. The PU methods are also applied to CMA1-2 and NCMA to compare with the performance of the LSCMA. Mathematical derivation and performance analysis are provided including convergence condition, steady-state mean and mean-square performance for a time-invariant system. The steady-state mean and mean-square performance are also presented for a time-varying system. Computational complexity is calculated for each adaptive filter algorithm. Numerical examples are shown to compare the computational complexity of the PU adaptive filters with the full-update filters. Computer simulation examples, including system identification and channel equalization, are used to demonstrate the mathematical analysis and show the performance of PU adaptive filter algorithms. They also show the convergence performance of PU adaptive filters. The performance is compared between the original adaptive filter algorithms and different partial-update methods. The performance is also compared among similar PU least-squares adaptive filter algorithms, such as PU RLS, PU CG, and PU EDS. In addition to the generic applications of system identification and channel equalization, two special applications of using partial update adaptive filters are also presented. One application uses PU adaptive filters to detect Global System for Mobile Communication (GSM) signals in a local GSM system using the Open Base Transceiver Station (OpenBTS) and Asterisk Private Branch Exchange (PBX). The other application uses PU adaptive filters to do image compression in a system combining hyperspectral image compression and classification. Bookseller Inventory # AAN9781627052313

More Information About This Seller | Ask Bookseller a Question

Buy New
US$ 42.10
Convert Currency

Add to Basket

Shipping: FREE
From United Kingdom to U.S.A.
Destination, Rates & Speeds

3.

Bei Xie, Tamal Bose
Published by Morgan Claypool Publishers, United States (2014)
ISBN 10: 1627052313 ISBN 13: 9781627052313
New Paperback Quantity Available: 1
Seller:
The Book Depository
(London, United Kingdom)
Rating
[?]

Book Description Morgan Claypool Publishers, United States, 2014. Paperback. Book Condition: New. Language: English . Brand New Book. Adaptive filters play an important role in the fields related to digital signal processing and communication, such as system identification, noise cancellation, channel equalization, and beamforming. In practical applications, the computational complexity of an adaptive filter is an important consideration. The Least Mean Square (LMS) algorithm is widely used because of its low computational complexity ($O(N)$) and simplicity in implementation. The least squares algorithms, such as Recursive Least Squares (RLS), Conjugate Gradient (CG), and Euclidean Direction Search (EDS), can converge faster and have lower steady-state mean square error (MSE) than LMS. However, their high computational complexity ($O(N^2)$) makes them unsuitable for many real-time applications. A well-known approach to controlling computational complexity is applying partial update (PU) method to adaptive filters. A partial update method can reduce the adaptive algorithm complexity by updating part of the weight vector instead of the entire vector or by updating part of the time. In the literature, there are only a few analyses of these partial update adaptive filter algorithms. Most analyses are based on partial update LMS and its variants. Only a few papers have addressed partial update RLS and Affine Projection (AP). Therefore, analyses for PU least-squares adaptive filter algorithms are necessary and meaningful.This monograph mostly focuses on the analyses of the partial update least-squares adaptive filter algorithms. Basic partial update methods are applied to adaptive filter algorithms including Least Squares CMA (LSCMA), EDS, and CG. The PU methods are also applied to CMA1-2 and NCMA to compare with the performance of the LSCMA. Mathematical derivation and performance analysis are provided including convergence condition, steady-state mean and mean-square performance for a time-invariant system. The steady-state mean and mean-square performance are also presented for a time-varying system. Computational complexity is calculated for each adaptive filter algorithm. Numerical examples are shown to compare the computational complexity of the PU adaptive filters with the full-update filters. Computer simulation examples, including system identification and channel equalization, are used to demonstrate the mathematical analysis and show the performance of PU adaptive filter algorithms. They also show the convergence performance of PU adaptive filters. The performance is compared between the original adaptive filter algorithms and different partial-update methods. The performance is also compared among similar PU least-squares adaptive filter algorithms, such as PU RLS, PU CG, and PU EDS. In addition to the generic applications of system identification and channel equalization, two special applications of using partial update adaptive filters are also presented. One application uses PU adaptive filters to detect Global System for Mobile Communication (GSM) signals in a local GSM system using the Open Base Transceiver Station (OpenBTS) and Asterisk Private Branch Exchange (PBX). The other application uses PU adaptive filters to do image compression in a system combining hyperspectral image compression and classification. Bookseller Inventory # AAN9781627052313

More Information About This Seller | Ask Bookseller a Question

Buy New
US$ 43.03
Convert Currency

Add to Basket

Shipping: FREE
From United Kingdom to U.S.A.
Destination, Rates & Speeds

4.

Xie, Bei
Published by Morgan and Claypool Publishers (2014)
ISBN 10: 1627052313 ISBN 13: 9781627052313
New Quantity Available: > 20
Print on Demand
Seller:
Books2Anywhere
(Fairford, GLOS, United Kingdom)
Rating
[?]

Book Description Morgan and Claypool Publishers, 2014. PAP. Book Condition: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bookseller Inventory # IQ-9781627052313

More Information About This Seller | Ask Bookseller a Question

Buy New
US$ 35.09
Convert Currency

Add to Basket

Shipping: US$ 11.87
From United Kingdom to U.S.A.
Destination, Rates & Speeds

5.

Xie, Bei
Published by Morgan and Claypool Publishers (2014)
ISBN 10: 1627052313 ISBN 13: 9781627052313
New Quantity Available: 7
Seller:
Books2Anywhere
(Fairford, GLOS, United Kingdom)
Rating
[?]

Book Description Morgan and Claypool Publishers, 2014. PAP. Book Condition: New. New Book. Shipped from UK in 4 to 14 days. Established seller since 2000. Bookseller Inventory # CE-9781627052313

More Information About This Seller | Ask Bookseller a Question

Buy New
US$ 37.67
Convert Currency

Add to Basket

Shipping: US$ 11.87
From United Kingdom to U.S.A.
Destination, Rates & Speeds

6.

Bei Xie, Tamal Bose
Published by Morgan Claypool Publishers, United States (2014)
ISBN 10: 1627052313 ISBN 13: 9781627052313
New Paperback Quantity Available: 10
Seller:
Book Depository hard to find
(London, United Kingdom)
Rating
[?]

Book Description Morgan Claypool Publishers, United States, 2014. Paperback. Book Condition: New. Language: English . This book usually ship within 10-15 business days and we will endeavor to dispatch orders quicker than this where possible. Brand New Book. Adaptive filters play an important role in the fields related to digital signal processing and communication, such as system identification, noise cancellation, channel equalization, and beamforming. In practical applications, the computational complexity of an adaptive filter is an important consideration. The Least Mean Square (LMS) algorithm is widely used because of its low computational complexity ($O(N)$) and simplicity in implementation. The least squares algorithms, such as Recursive Least Squares (RLS), Conjugate Gradient (CG), and Euclidean Direction Search (EDS), can converge faster and have lower steady-state mean square error (MSE) than LMS. However, their high computational complexity ($O(N^2)$) makes them unsuitable for many real-time applications. A well-known approach to controlling computational complexity is applying partial update (PU) method to adaptive filters. A partial update method can reduce the adaptive algorithm complexity by updating part of the weight vector instead of the entire vector or by updating part of the time. In the literature, there are only a few analyses of these partial update adaptive filter algorithms. Most analyses are based on partial update LMS and its variants. Only a few papers have addressed partial update RLS and Affine Projection (AP). Therefore, analyses for PU least-squares adaptive filter algorithms are necessary and meaningful.This monograph mostly focuses on the analyses of the partial update least-squares adaptive filter algorithms. Basic partial update methods are applied to adaptive filter algorithms including Least Squares CMA (LSCMA), EDS, and CG. The PU methods are also applied to CMA1-2 and NCMA to compare with the performance of the LSCMA. Mathematical derivation and performance analysis are provided including convergence condition, steady-state mean and mean-square performance for a time-invariant system. The steady-state mean and mean-square performance are also presented for a time-varying system. Computational complexity is calculated for each adaptive filter algorithm. Numerical examples are shown to compare the computational complexity of the PU adaptive filters with the full-update filters. Computer simulation examples, including system identification and channel equalization, are used to demonstrate the mathematical analysis and show the performance of PU adaptive filter algorithms. They also show the convergence performance of PU adaptive filters. The performance is compared between the original adaptive filter algorithms and different partial-update methods. The performance is also compared among similar PU least-squares adaptive filter algorithms, such as PU RLS, PU CG, and PU EDS. In addition to the generic applications of system identification and channel equalization, two special applications of using partial update adaptive filters are also presented. One application uses PU adaptive filters to detect Global System for Mobile Communication (GSM) signals in a local GSM system using the Open Base Transceiver Station (OpenBTS) and Asterisk Private Branch Exchange (PBX). The other application uses PU adaptive filters to do image compression in a system combining hyperspectral image compression and classification. Bookseller Inventory # LIE9781627052313

More Information About This Seller | Ask Bookseller a Question

Buy New
US$ 50.76
Convert Currency

Add to Basket

Shipping: FREE
From United Kingdom to U.S.A.
Destination, Rates & Speeds

7.

Tamal Bose
Published by Morgan & Claypool
ISBN 10: 1627052313 ISBN 13: 9781627052313
New Paperback Quantity Available: > 20
Seller:
BuySomeBooks
(Las Vegas, NV, U.S.A.)
Rating
[?]

Book Description Morgan & Claypool. Paperback. Book Condition: New. Paperback. 118 pages. Dimensions: 9.2in. x 7.5in. x 0.3in.Adaptive filters play an important role in the fields related to digital signal processing and communication, such as system identification, noise cancellation, channel equalization, and beamforming. In practical applications, the computational complexity of an adaptive filter is an important consideration. The Least Mean Square (LMS) algorithm is widely used because of its low computational complexity (O(N)) and simplicity in implementation. The least squares algorithms, such as Recursive Least Squares (RLS), Conjugate Gradient (CG), and Euclidean Direction Search (EDS), can converge faster and have lower steady-state mean square error (MSE) than LMS. However, their high computational complexity (O(N2)) makes them unsuitable for many real-time applications. A well-known approach to controlling computational complexity is applying partial update (PU) method to adaptive filters. A partial update method can reduce the adaptive algorithm complexity by updating part of the weight vector instead of the entire vector or by updating part of the time. In the literature, there are only a few analyses of these partial update adaptive filter algorithms. Most analyses are based on partial update LMS and its variants. Only a few papers have addressed partial update RLS and Affine Projection (AP). Therefore, analyses for PU least-squares adaptive filter algorithms are necessary and meaningful. This monograph mostly focuses on the analyses of the partial update least-squares adaptive filter algorithms. Basic partial update methods are applied to adaptive filter algorithms including Least Squares CMA (LSCMA), EDS, and CG. The PU methods are also applied to CMA1-2 and NCMA to compare with the performance of the LSCMA. Mathematical derivation and performance analysis are provided including convergence condition, steady-state mean and mean-square performance for a time-invariant system. The steady-state mean and mean-square performance are also presented for a time-varying system. Computational complexity is calculated for each adaptive filter algorithm. Numerical examples are shown to compare the computational complexity of the PU adaptive filters with the full-update filters. Computer simulation examples, including system identification and channel equalization, are used to demonstrate the mathematical analysis and show the performance of PU adaptive filter algorithms. They also show the convergence performance of PU adaptive filters. The performance is compared between the original adaptive filter algorithms and different partial-update methods. The performance is also compared among similar PU least-squares adaptive filter algorithms, such as PU RLS, PU CG, and PU EDS. In addition to the generic applications of system identification and channel equalization, two special applications of using partial update adaptive filters are also presented. One application uses PU adaptive filters to detect Global System for Mobile Communication (GSM) signals in a local GSM system using the Open Base Transceiver Station (OpenBTS) and Asterisk Private Branch Exchange (PBX). The other application uses PU adaptive filters to do image compression in a system combining hyperspectral image compression and classification. Table of Contents: Introduction Background Partial Update CMA-based Algorithms for Adaptive Filtering Partial-Update CG Algorithms for Adaptive Filtering Partial-Update EDS Algorithms for Adaptive Filtering Special Applications of Partial-Update Adaptive Filters Bibliography Authors Biographies This item ships from multiple locations. Your book may arrive from Roseburg,OR, La Vergne,TN. Paperback. Bookseller Inventory # 9781627052313

More Information About This Seller | Ask Bookseller a Question

Buy New
US$ 51.62
Convert Currency

Add to Basket

Shipping: FREE
Within U.S.A.
Destination, Rates & Speeds

8.

Bei Xie; Tamal Bose
Published by Morgan & Claypool Publishers (2014)
ISBN 10: 1627052313 ISBN 13: 9781627052313
New Softcover Quantity Available: > 20
Seller:
California Spanish Books
(San francisco, CA, U.S.A.)
Rating
[?]

Book Description Morgan & Claypool Publishers, 2014. Book Condition: New. Bookseller Inventory # I-9781627052313

More Information About This Seller | Ask Bookseller a Question

Buy New
US$ 44.00
Convert Currency

Add to Basket

Shipping: US$ 8.00
Within U.S.A.
Destination, Rates & Speeds

9.

Xie, Bei; Bose, Tamal
Published by Morgan & Claypool Publishers
ISBN 10: 1627052313 ISBN 13: 9781627052313
New PAPERBACK Quantity Available: > 20
Seller:
Russell Books
(Victoria, BC, Canada)
Rating
[?]

Book Description Morgan & Claypool Publishers. PAPERBACK. Book Condition: New. 1627052313 Special order direct from the distributor. Bookseller Inventory # ING9781627052313

More Information About This Seller | Ask Bookseller a Question

Buy New
US$ 54.00
Convert Currency

Add to Basket

Shipping: US$ 7.00
From Canada to U.S.A.
Destination, Rates & Speeds

10.

XIE & BOSE
Published by Morgan & Claypool Publishers (2014)
ISBN 10: 1627052313 ISBN 13: 9781627052313
New Paperback Quantity Available: 1
Seller:
Herb Tandree Philosophy Books
(Stroud, GLOS, United Kingdom)
Rating
[?]

Book Description Morgan & Claypool Publishers, 2014. Paperback. Book Condition: NEW. 9781627052313 This listing is a new book, a title currently in-print which we order directly and immediately from the publisher. Bookseller Inventory # HTANDREE01037541

More Information About This Seller | Ask Bookseller a Question

Buy New
US$ 50.95
Convert Currency

Add to Basket

Shipping: US$ 10.55
From United Kingdom to U.S.A.
Destination, Rates & Speeds

There are more copies of this book

View all search results for this book