A key strategy in machine learning is to break down a problem into smaller and more manageable parts, then process data or unknown variables recursively. Sequential Monte Carlo (SMC) is a technique for solving statistical inference problems recursively. Over the last 20 years, SMC has been developed to enabled inference in increasingly complex and challenging models in Signal Processing and Statistics. This monograph shows how the powerful technique can be applied to machine learning problems such as probabilistic programming, variational inference and inference evaluation to name a few. Written in a tutorial style, Elements of Sequential Monte Carlo introduces the basics of SMC, discusses practical issues, and reviews theoretical results before guiding the reader through a series of advanced topics to give a complete overview of the topic and its application to machine learning problems. This monograph provides an accessible treatment for researchers of a topic that has recently gained significant interest in the machine learning community.
"synopsis" may belong to another edition of this title.
US$ 2.64 shipping within U.S.A.
Destination, rates & speedsSeller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 38686553-n
Quantity: Over 20 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar2811580338341
Quantity: Over 20 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9781680836325
Quantity: Over 20 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 38686553
Quantity: Over 20 available
Seller: Rarewaves USA, OSWEGO, IL, U.S.A.
Paperback. Condition: New. A key strategy in machine learning is to break down a problem into smaller and more manageable parts, then process data or unknown variables recursively. Sequential Monte Carlo (SMC) is a technique for solving statistical inference problems recursively. Over the last 20 years, SMC has been developed to enabled inference in increasingly complex and challenging models in Signal Processing and Statistics. This monograph shows how the powerful technique can be applied to machine learning problems such as probabilistic programming, variational inference and inference evaluation to name a few.Written in a tutorial style, Elements of Sequential Monte Carlo introduces the basics of SMC, discusses practical issues, and reviews theoretical results before guiding the reader through a series of advanced topics to give a complete overview of the topic and its application to machine learning problems.This monograph provides an accessible treatment for researchers of a topic that has recently gained significant interest in the machine learning community. Seller Inventory # LU-9781680836325
Quantity: Over 20 available
Seller: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condition: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L0-9781680836325
Quantity: Over 20 available
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
PAP. Condition: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # IQ-9781680836325
Quantity: 15 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: As New. Unread book in perfect condition. Seller Inventory # 38686553
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9781680836325_new
Quantity: Over 20 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Paperback / softback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 185. Seller Inventory # C9781680836325
Quantity: Over 20 available