Novel deep learning approaches are achieving state-of-the-art accuracy in the area of radar target recognition, enabling applications beyond the scope of human-level performance. This book provides an introduction to the unique aspects of machine learning for radar signal processing that any scientist or engineer seeking to apply these technologies ought to be aware of.
The book begins with three introductory chapters on radar systems and phenomenology, machine learning principles, and optimization for training common deep neural network (DNN) architectures. Subsequently, the book summarizes radar-specific issues relating to the different domain representations in which radar data may be presented to DNNs and synthetic data generation for training dataset augmentation. Further chapters focus on specific radar applications, which relate to DNN design for micro-Doppler analysis, SAR-based automatic target recognition, radar remote sensing, and emerging fields, such as data fusion and image reconstruction.
Edited by an acknowledged expert, and with contributions from an international team of authors, this book provides a solid introduction to the fundamentals of radar and machine learning, and then goes on to explore a range of technologies, applications and challenges in this developing field. This book is also a valuable resource for both radar engineers seeking to learn more about deep learning, as well as computer scientists who are seeking to explore novel applications of machine learning.
In an era where the applications of RF sensing are multiplying by the day, this book serves as an easily accessible primer on the nuances of deep learning for radar applications.
"synopsis" may belong to another edition of this title.
Sevgi Zubeyde Gurbuz is an assistant professor of electrical and computer engineering at the University of Alabama, USA. She received the SPIE Defense and Commercial Sensing Rising Researcher Award in 2020. Her research interests are in radar signal processing and machine learning for applications ranging from human activity and gait analysis for remote health monitoring in biomedical engineering to American Sign Language and gesture recognition for human-computer interaction, and multimodal remote sensing for earth sciences.
"About this title" may belong to another edition of this title.
US$ 2.64 shipping within U.S.A.
Destination, rates & speedsSeller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 45710122-n
Quantity: Over 20 available
Seller: Best Price, Torrance, CA, U.S.A.
Condition: New. SUPER FAST SHIPPING. Seller Inventory # 9781785618529
Quantity: 1 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9781785618529
Quantity: Over 20 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 45710122
Quantity: Over 20 available
Seller: Rarewaves USA, OSWEGO, IL, U.S.A.
Hardback. Condition: New. Novel deep learning approaches are achieving state-of-the-art accuracy in the area of radar target recognition, enabling applications beyond the scope of human-level performance. This book provides an introduction to the unique aspects of machine learning for radar signal processing that any scientist or engineer seeking to apply these technologies ought to be aware of. The book begins with three introductory chapters on radar systems and phenomenology, machine learning principles, and optimization for training common deep neural network (DNN) architectures. Subsequently, the book summarizes radar-specific issues relating to the different domain representations in which radar data may be presented to DNNs and synthetic data generation for training dataset augmentation. Further chapters focus on specific radar applications, which relate to DNN design for micro-Doppler analysis, SAR-based automatic target recognition, radar remote sensing, and emerging fields, such as data fusion and image reconstruction. Edited by an acknowledged expert, and with contributions from an international team of authors, this book provides a solid introduction to the fundamentals of radar and machine learning, and then goes on to explore a range of technologies, applications and challenges in this developing field. This book is also a valuable resource for both radar engineers seeking to learn more about deep learning, as well as computer scientists who are seeking to explore novel applications of machine learning. In an era where the applications of RF sensing are multiplying by the day, this book serves as an easily accessible primer on the nuances of deep learning for radar applications. Seller Inventory # LU-9781785618529
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 45710122-n
Quantity: Over 20 available
Seller: PBShop.store US, Wood Dale, IL, U.S.A.
HRD. Condition: New. New Book. Shipped from UK. Established seller since 2000. Seller Inventory # GB-9781785618529
Quantity: 1 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: As New. Unread book in perfect condition. Seller Inventory # 45710122
Quantity: Over 20 available
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
HRD. Condition: New. New Book. Shipped from UK. Established seller since 2000. Seller Inventory # GB-9781785618529
Quantity: 1 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9781785618529_new
Quantity: Over 20 available