Get to grips with key structural changes in TensorFlow 2.0
Key Features
Book Description
TensorFlow is an end-to-end machine learning platform for experts as well as beginners, and its new version, TensorFlow 2.0 (TF 2.0), improves its simplicity and ease of use. This book will help you understand and utilize the latest TensorFlow features.
What's New in TensorFlow 2.0 starts by focusing on advanced concepts such as the new TensorFlow Keras APIs, eager execution, and efficient distribution strategies that help you to run your machine learning models on multiple GPUs and TPUs. The book then takes you through the process of building data ingestion and training pipelines, and it provides recommendations and best practices for feeding data to models created using the new tf.keras API. You'll explore the process of building an inference pipeline using TF Serving and other multi-platform deployments before moving on to explore the newly released AIY, which is essentially do-it-yourself AI. This book delves into the core APIs to help you build unified convolutional and recurrent layers and use TensorBoard to visualize deep learning models using what-if analysis.
By the end of the book, you'll have learned about compatibility between TF 2.0 and TF 1.x and be able to migrate to TF 2.0 smoothly.
What you will learn
Who this book is for
If you're a data scientist, machine learning practitioner, deep learning researcher, or AI enthusiast who wants to migrate code to TensorFlow 2.0 and explore the latest features of TensorFlow 2.0, this book is for you. Prior experience with TensorFlow and Python programming is necessary to understand the concepts covered in the book.
Table of Contents
"synopsis" may belong to another edition of this title.
Ajay Baranwal works as a director at the Center for Deep Learning in Electronics Manufacturing, where he is responsible for researching and developing TensorFlow-based deep learning applications in the semiconductor and electronics manufacturing industry. Part of his role is to teach and train deep learning techniques to professionals.
He has a solid history of software engineering and management, where he got hooked on deep learning. He moved to natural language understanding (NLU) to pursue deep learning further at Abzooba and built an information retrieval system for the finance sector. He has also worked at Ansys Inc. as a senior manager (engineering) and a technical fellow (data science) and introduced several ML applications.
Alizishaan Khatri works as a machine learning engineer in Silicon Valley. He uses TensorFlow to build, design, and maintain production-grade systems that use deep learning for NLP applications. A major system he has built is a deep learning-based system for detecting offensive content in chats. Other works he has done includes text classification and named entity recognition (NER) systems for different use cases. He is passionate about sharing ideas with the community and frequently speaks at tech conferences across the globe.
He holds a master's degree in computer science from the SUNY Buffalo University. His thesis proposed a solution to the problem of overfitting in deep learning. Outside of his work, he enjoys skiing and mountaineering.
Tanish Baranwal is a sophomore in high school and lives in California with his family and has worked with his dad on deep learning projects using TensorFlow for the last 3 years. He has been coding for 9 years (since 1st grade) and is well versed in Python and JavaScript. He is now learning C++. He has certificates from various online courses and has won the Entrepreneurship Showcase Award at his school.
Some of his deep learning projects include anomaly detection systems for transaction fraud, a system to save energy by turning off domestic water heaters when not in use, and a fully functional style transfer program that can recreate any photograph in another style. He has also written blogs on deep learning on Medium with over 1,000 views.
"About this title" may belong to another edition of this title.
Seller: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condition: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L0-9781838823856
Quantity: Over 20 available
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
PAP. Condition: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L0-9781838823856
Quantity: Over 20 available
Seller: Chiron Media, Wallingford, United Kingdom
PF. Condition: New. Seller Inventory # 6666-IUK-9781838823856
Quantity: 10 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Paperback / softback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 222. Seller Inventory # C9781838823856
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9781838823856_new
Quantity: Over 20 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering. Seller Inventory # 9781838823856
Quantity: 1 available
Seller: moluna, Greven, Germany
Condition: New. This book will cover all the new features that have been introduced in TensorFlow 2.0 especially the major highlight, including eager execution and more. You will learn how to make the best use of these features to migrate your codes from TensorFlow 1.x to . Seller Inventory # 448360834
Quantity: Over 20 available
Seller: dsmbooks, Liverpool, United Kingdom
Paperback. Condition: New. New. book. Seller Inventory # D7F9-7-M-1838823859-6
Quantity: 1 available