Get to grips with solving real-world NLP problems, such as dependency parsing, information extraction, topic modeling, and text data visualization
Python is the most widely used language for natural language processing (NLP) thanks to its extensive tools and libraries for analyzing text and extracting computer-usable data. This book will take you through a range of techniques for text processing, from basics such as parsing the parts of speech to complex topics such as topic modeling, text classification, and visualization.
Starting with an overview of NLP, the book presents recipes for dividing text into sentences, stemming and lemmatization, removing stopwords, and parts of speech tagging to help you to prepare your data. You’ll then learn ways of extracting and representing grammatical information, such as dependency parsing and anaphora resolution, discover different ways of representing the semantics using bag-of-words, TF-IDF, word embeddings, and BERT, and develop skills for text classification using keywords, SVMs, LSTMs, and other techniques. As you advance, you’ll also see how to extract information from text, implement unsupervised and supervised techniques for topic modeling, and perform topic modeling of short texts, such as tweets. Additionally, the book shows you how to develop chatbots using NLTK and Rasa and visualize text data.
By the end of this NLP book, you’ll have developed the skills to use a powerful set of tools for text processing.
This book is for data scientists and professionals who want to learn how to work with text. Intermediate knowledge of Python will help you to make the most out of this book. If you are an NLP practitioner, this book will serve as a code reference when working on your projects.
"synopsis" may belong to another edition of this title.
Zhenya Antić is a Natural Language Processing (NLP) professional working at Practical Linguistics Inc. She helps businesses to improve processes and increase productivity by automating text processing. Zhenya holds a PhD in linguistics from University of California Berkeley and a BS in computer science from Massachusetts Institute of Technology.
"About this title" may belong to another edition of this title.
US$ 11.70 shipping from Germany to U.S.A.
Destination, rates & speedsSeller: medimops, Berlin, Germany
Condition: very good. Gut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages. Seller Inventory # M01838987312-V
Quantity: 1 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 42628163-n
Quantity: Over 20 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar2912160229572
Quantity: Over 20 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 42628163
Quantity: Over 20 available
Seller: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condition: New. Python Natural Language Processing Cookbook: Over 50 recipes to understand, analyze, and generate text for implementing language processing tasks 1.08. Book. Seller Inventory # BBS-9781838987312
Quantity: 5 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9781838987312
Quantity: Over 20 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 284. Seller Inventory # 389387135
Quantity: 4 available
Seller: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condition: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L0-9781838987312
Quantity: Over 20 available
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
PAP. Condition: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L0-9781838987312
Quantity: Over 20 available
Seller: Rarewaves USA, OSWEGO, IL, U.S.A.
Paperback. Condition: New. Get to grips with solving real-world NLP problems, such as dependency parsing, information extraction, topic modeling, and text data visualizationKey FeaturesAnalyze varying complexities of text using popular Python packages such as NLTK, spaCy, sklearn, and gensimImplement common and not-so-common linguistic processing tasks using Python librariesOvercome the common challenges faced while implementing NLP pipelinesBook DescriptionPython is the most widely used language for natural language processing (NLP) thanks to its extensive tools and libraries for analyzing text and extracting computer-usable data. This book will take you through a range of techniques for text processing, from basics such as parsing the parts of speech to complex topics such as topic modeling, text classification, and visualization.Starting with an overview of NLP, the book presents recipes for dividing text into sentences, stemming and lemmatization, removing stopwords, and parts of speech tagging to help you to prepare your data. You'll then learn ways of extracting and representing grammatical information, such as dependency parsing and anaphora resolution, discover different ways of representing the semantics using bag-of-words, TF-IDF, word embeddings, and BERT, and develop skills for text classification using keywords, SVMs, LSTMs, and other techniques. As you advance, you'll also see how to extract information from text, implement unsupervised and supervised techniques for topic modeling, and perform topic modeling of short texts, such as tweets. Additionally, the book shows you how to develop chatbots using NLTK and Rasa and visualize text data.By the end of this NLP book, you'll have developed the skills to use a powerful set of tools for text processing.What you will learnBecome well-versed with basic and advanced NLP techniques in PythonRepresent grammatical information in text using spaCy, and semantic information using bag-of-words, TF-IDF, and word embeddingsPerform text classification using different methods, including SVMs and LSTMsExplore different techniques for topic modeling such as K-means, LDA, NMF, and BERTWork with visualization techniques such as NER and word clouds for different NLP toolsBuild a basic chatbot using NLTK and RasaExtract information from text using regular expression techniques and statistical and deep learning toolsWho this book is forThis book is for data scientists and professionals who want to learn how to work with text. Intermediate knowledge of Python will help you to make the most out of this book. If you are an NLP practitioner, this book will serve as a code reference when working on your projects. Seller Inventory # LU-9781838987312
Quantity: Over 20 available