Items related to Neural Networks and Deep Learning: A Textbook

Neural Networks and Deep Learning: A Textbook - Softcover

  • 4.31 out of 5 stars
    45 ratings by Goodreads
 
9783030068561: Neural Networks and Deep Learning: A Textbook

Synopsis

This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories:

The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec.

Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines.

Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10.

The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.

"synopsis" may belong to another edition of this title.

From the Back Cover

This book covers both classical and modern models in deep learning. The chapters of this book span three categories:

The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec.

Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines.

Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10.

The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.

About the Author

Charu C. Aggarwal is a Distinguished Research Staff Member (DRSM) at the IBM T. J. Watson Research Center in Yorktown Heights, New York. He completed his undergraduate degree in Computer Science from the Indian Institute of Technology at Kanpur in 1993 and his Ph.D. in Operations Research from the Massachusetts Institute of Technology in 1996. He has published more than 350 papers in refereed conferences and journals, and has applied for or been granted more than 80 patents. He is author or editor of 18 books, including textbooks on data mining, machine learning (for text), recommender systems, and outlier analy-sis. Because of the commercial value of his patents, he has thrice been designated a Master Inventor at IBM. He has received several inter-nal and external awards, including the EDBT Test-of-Time Award (2014) and the IEEE ICDM Research Contributions Award (2015). Aside from serving as program or general chair of many major conferences in data mining, he is an editor-in-chief of the ACM SIGKDD Explorations and also of the ACM Transactions on Knowledge Discovery from Data. He is a fellow of the SIAM, ACM, and the IEEE, for "contributions to knowledge discovery and data mining algorithms."

"About this title" may belong to another edition of this title.

  • PublisherSpringer
  • Publication date2019
  • ISBN 10 3030068560
  • ISBN 13 9783030068561
  • BindingPaperback
  • LanguageEnglish
  • Number of pages520
  • Rating
    • 4.31 out of 5 stars
      45 ratings by Goodreads

Buy Used

Condition: Good
Ships in a BOX from Central Missouri...
View this item

US$ 3.99 shipping within U.S.A.

Destination, rates & speeds

Other Popular Editions of the Same Title

Search results for Neural Networks and Deep Learning: A Textbook

Stock Image

Aggarwal, Charu C.
Published by Springer, 2019
ISBN 10: 3030068560 ISBN 13: 9783030068561
Used paperback

Seller: Textbooks_Source, Columbia, MO, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

paperback. Condition: Good. Ships in a BOX from Central Missouri! May not include working access code. Will not include dust jacket. Has used sticker(s) and some writing or highlighting. UPS shipping for most packages, (Priority Mail for AK/HI/APO/PO Boxes). Softcover reprint of the original 1st ed. 2018. Seller Inventory # 011087876U

Contact seller

Buy Used

US$ 50.87
Convert currency
Shipping: US$ 3.99
Within U.S.A.
Destination, rates & speeds

Quantity: 1 available

Add to basket

Stock Image

Aggarwal, Charu C.
Published by Springer, 2019
ISBN 10: 3030068560 ISBN 13: 9783030068561
Used Softcover

Seller: medimops, Berlin, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: very good. Gut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages. Seller Inventory # M03030068560-V

Contact seller

Buy Used

US$ 50.19
Convert currency
Shipping: US$ 10.19
From Germany to U.S.A.
Destination, rates & speeds

Quantity: 1 available

Add to basket

Stock Image

Aggarwal, Charu C.
Published by Springer Nature Switzerland Ag, 2018
ISBN 10: 3030068560 ISBN 13: 9783030068561
Used Softcover

Seller: Anybook.com, Lincoln, United Kingdom

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has soft covers. In good all round condition. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,1150grams, ISBN:9783030068561. Seller Inventory # 5960433

Contact seller

Buy Used

US$ 47.80
Convert currency
Shipping: US$ 17.09
From United Kingdom to U.S.A.
Destination, rates & speeds

Quantity: 1 available

Add to basket