Search preferences
Skip to main search results

Search filters

Product Type

  • All Product Types 
  • Books (4)
  • Magazines & Periodicals (No further results match this refinement)
  • Comics (No further results match this refinement)
  • Sheet Music (No further results match this refinement)
  • Art, Prints & Posters (No further results match this refinement)
  • Photographs (No further results match this refinement)
  • Maps (No further results match this refinement)
  • Manuscripts & Paper Collectibles (No further results match this refinement)

Condition Learn more

  • New (4)
  • As New, Fine or Near Fine (No further results match this refinement)
  • Very Good or Good (No further results match this refinement)
  • Fair or Poor (No further results match this refinement)
  • As Described (No further results match this refinement)

Binding

Collectible Attributes

Language (1)

Price

  • Any Price 
  • Under US$ 25 (No further results match this refinement)
  • US$ 25 to US$ 50 
  • Over US$ 50 (No further results match this refinement)
Custom price range (US$)

Free Shipping

  • Free Shipping to U.S.A. (No further results match this refinement)

Seller Location

  • Long Quan

    Published by Springer International Publishing, Springer International Publishing Okt 2009, 2009

    ISBN 10: 3031006801 ISBN 13: 9783031006807

    Language: English

    Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany

    Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

    Contact seller

    US$ 69.83 shipping from Germany to U.S.A.

    Destination, rates & speeds

    Quantity: 2 available

    Add to basket

    Taschenbuch. Condition: Neu. Neuware -Plants and trees are among the most complex natural objects. Much work has been done attempting to model them, with varying degrees of success. In this book, we review the various approaches in computer graphics, which we categorize as rule-based, image-based, and sketch-based methods. We describe our approaches for modeling plants and trees using images. Image-based approaches have the distinct advantage that the resulting model inherits the realistic shape and complexity of a real plant or tree. We use different techniques for modeling plants (with relatively large leaves) and trees (with relatively small leaves).With plants, we model each leaf from images, while for trees, the leaves are only approximated due to their small size and large number. Both techniques start with the same initial step of structure from motion on multiple images of the plant or tree that is to be modeled. For our plant modeling system, because we need to model the individual leaves, these leaves need to besegmented out from the images. We designed our plant modeling system to be interactive, automating the process of shape recovery while relying on the user to provide simple hints on segmentation. Segmentation is performed in both image and 3D spaces, allowing the user to easily visualize its effect immediately. Using the segmented image and 3D data, the geometry of each leaf is then automatically recovered from the multiple views by fitting a deformable leaf model. Our system also allows the user to easily reconstruct branches in a similar manner. To model trees, because of the large leaf count, small image footprint, and widespread occlusions, we do not model the leaves exactly as we do for plants. Instead, we populate the tree with leaf replicas from segmented source images to reconstruct the overall tree shape. In addition, we use the shape patterns of visible branches to predict those of obscured branches. As a result, we are able to design our tree modeling system so as to minimize user intervention. We also handle the special case of modeling a tree from only a single image. Here, the user is required to draw strokes on the image to indicate the tree crown (so that the leaf region is approximately known) and to refine the recovery of branches. As before, we concatenate the shape patterns from a library to generate the 3D shape. To substantiate the effectiveness of our systems, we show realistic reconstructions of a variety of plants and trees from images. Finally, we offer our thoughts on improving our systems and on the remaining challenges associated with plant and tree modeling. Table of Contents: Introduction / Review of Plant and Tree Modeling Techniques / Image-Based Technique for Modeling Plants / Image-Based Technique for Modeling Trees / Single Image Tree Modeling / Summary and Concluding Remarks / AcknowledgmentsSpringer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 84 pp. Englisch.

  • Long Quan

    Published by Springer International Publishing, 2009

    ISBN 10: 3031006801 ISBN 13: 9783031006807

    Language: English

    Seller: AHA-BUCH GmbH, Einbeck, Germany

    Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

    Contact seller

    US$ 71.20 shipping from Germany to U.S.A.

    Destination, rates & speeds

    Quantity: 1 available

    Add to basket

    Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - Plants and trees are among the most complex natural objects. Much work has been done attempting to model them, with varying degrees of success. In this book, we review the various approaches in computer graphics, which we categorize as rule-based, image-based, and sketch-based methods. We describe our approaches for modeling plants and trees using images. Image-based approaches have the distinct advantage that the resulting model inherits the realistic shape and complexity of a real plant or tree. We use different techniques for modeling plants (with relatively large leaves) and trees (with relatively small leaves).With plants, we model each leaf from images, while for trees, the leaves are only approximated due to their small size and large number. Both techniques start with the same initial step of structure from motion on multiple images of the plant or tree that is to be modeled. For our plant modeling system, because we need to model the individual leaves, these leaves need to besegmented out from the images. We designed our plant modeling system to be interactive, automating the process of shape recovery while relying on the user to provide simple hints on segmentation. Segmentation is performed in both image and 3D spaces, allowing the user to easily visualize its effect immediately. Using the segmented image and 3D data, the geometry of each leaf is then automatically recovered from the multiple views by fitting a deformable leaf model. Our system also allows the user to easily reconstruct branches in a similar manner. To model trees, because of the large leaf count, small image footprint, and widespread occlusions, we do not model the leaves exactly as we do for plants. Instead, we populate the tree with leaf replicas from segmented source images to reconstruct the overall tree shape. In addition, we use the shape patterns of visible branches to predict those of obscured branches. As a result, we are able to design our tree modeling system so as to minimize user intervention. We also handle the special case of modeling a tree from only a single image. Here, the user is required to draw strokes on the image to indicate the tree crown (so that the leaf region is approximately known) and to refine the recovery of branches. As before, we concatenate the shape patterns from a library to generate the 3D shape. To substantiate the effectiveness of our systems, we show realistic reconstructions of a variety of plants and trees from images. Finally, we offer our thoughts on improving our systems and on the remaining challenges associated with plant and tree modeling. Table of Contents: Introduction / Review of Plant and Tree Modeling Techniques / Image-Based Technique for Modeling Plants / Image-Based Technique for Modeling Trees / Single Image Tree Modeling / Summary and Concluding Remarks / Acknowledgments.

  • Long Quan

    Published by Springer International Publishing Okt 2009, 2009

    ISBN 10: 3031006801 ISBN 13: 9783031006807

    Language: English

    Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany

    Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

    Contact seller

    Print on Demand

    US$ 26.77 shipping from Germany to U.S.A.

    Destination, rates & speeds

    Quantity: 2 available

    Add to basket

    Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Plants and trees are among the most complex natural objects. Much work has been done attempting to model them, with varying degrees of success. In this book, we review the various approaches in computer graphics, which we categorize as rule-based, image-based, and sketch-based methods. We describe our approaches for modeling plants and trees using images. Image-based approaches have the distinct advantage that the resulting model inherits the realistic shape and complexity of a real plant or tree. We use different techniques for modeling plants (with relatively large leaves) and trees (with relatively small leaves).With plants, we model each leaf from images, while for trees, the leaves are only approximated due to their small size and large number. Both techniques start with the same initial step of structure from motion on multiple images of the plant or tree that is to be modeled. For our plant modeling system, because we need to model the individual leaves, these leaves need to be segmented out from the images. We designed our plant modeling system to be interactive, automating the process of shape recovery while relying on the user to provide simple hints on segmentation. Segmentation is performed in both image and 3D spaces, allowing the user to easily visualize its effect immediately. Using the segmented image and 3D data, the geometry of each leaf is then automatically recovered from the multiple views by fitting a deformable leaf model. Our system also allows the user to easily reconstruct branches in a similar manner. To model trees, because of the large leaf count, small image footprint, and widespread occlusions, we do not model the leaves exactly as we do for plants. Instead, we populate the tree with leaf replicas from segmented source images to reconstruct the overall tree shape. In addition, we use the shape patterns of visible branches to predict those of obscured branches. As a result, we are able to design our tree modeling system so as to minimize user intervention. We also handle the special case of modeling a tree from only a single image. Here, the user is required to draw strokes on the image to indicate the tree crown (so that the leaf region is approximately known) and to refine the recovery of branches. As before, we concatenate the shape patterns from a library to generate the 3D shape. To substantiate the effectiveness of our systems, we show realistic reconstructions of a variety of plants and trees from images. Finally, we offer our thoughts on improving our systems and on the remaining challenges associated with plant and tree modeling. Table of Contents: Introduction / Review of Plant and Tree Modeling Techniques / Image-Based Technique for Modeling Plants / Image-Based Technique for Modeling Trees / Single Image Tree Modeling / Summary and Concluding Remarks / Acknowledgments 84 pp. Englisch.

  • Kang, Sing Bang|Quan, Long

    Published by Springer, Berlin|Springer International Publishing|Morgan & Claypool|Springer, 2009

    ISBN 10: 3031006801 ISBN 13: 9783031006807

    Language: English

    Seller: moluna, Greven, Germany

    Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

    Contact seller

    Print on Demand

    US$ 57.01 shipping from Germany to U.S.A.

    Destination, rates & speeds

    Quantity: Over 20 available

    Add to basket

    Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Plants and trees are among the most complex natural objects. Much work has been done attempting to model them, with varying degrees of success. In this book, we review the various approaches in computer graphics, which we categorize as rule-based, image-bas.