Embedding Problems in Symplectic Geometry (de Gruyter Expositions in Mathematics)

0 avg rating
( 0 ratings by Goodreads )
 
9783119159173: Embedding Problems in Symplectic Geometry (de Gruyter Expositions in Mathematics)

Symplectic geometry is the geometry underlying Hamiltonian dynamics, and symplectic mappings arise as time-1-maps of Hamiltonian flows. The spectacular rigidity phenomena for symplectic mappings discovered in the last two decades show that certain things cannot be done by a symplectic mapping. For instance, Gromov's famous "non-squeezing" theorem states that one cannot map a ball into a thinner cylinder by a symplectic embedding. The aim of this book is to show that certain other things can be done by symplectic mappings. This is achieved by various elementary and explicit symplectic embedding constructions, such as "folding", "wrapping", and "lifting". These constructions are carried out in detail and are used to solve some specific symplectic embedding problems. The exposition is self-contained and addressed to students and researchers interested in geometry or dynamics.

"synopsis" may belong to another edition of this title.

About the Author:

Felix Schlenk is Postdoc at the Department of Mathematics of Leipzig University, Leipzig, Germany.

Review:

"This book based on the Ph.D. thesis of the author may serve as a very good introduction to symplectic rigidity and symplectic embeddings."Iskander A. Taimanov in: Zentralblatt fur Mathematik 24/2005

"About this title" may belong to another edition of this title.

(No Available Copies)

Search Books:



Create a Want

If you know the book but cannot find it on AbeBooks, we can automatically search for it on your behalf as new inventory is added. If it is added to AbeBooks by one of our member booksellers, we will notify you!

Create a Want