This thesis focuses on the dynamics of autonomous Boolean networks, on the basis of Boolean logic functions in continuous time without external clocking. These networks are realized with integrated circuits on an electronic chip as a field programmable gate array (FPGA) with roughly 100,000 logic gates, offering an extremely flexible model system. It allows fast and cheap design cycles and large networks with arbitrary topologies and coupling delays.
The author presents pioneering results on theoretical modeling, experimental realization, and selected applications. In this regard, three classes of novel dynamic behavior are investigated: (i) Chaotic Boolean networks are proposed as high-speed physical random number generators with high bit rates. (ii) Networks of periodic Boolean oscillators are home to long-living transient chimera states, i.e., novel patterns of coexisting domains of spatially coherent (synchronized) and incoherent (desynchronized) dynamics. (iii) Excitable networks exhibit cluster synchronization and can be used as fast artificial Boolean neurons whose spiking patterns can be controlled. This work presents the first experimental platform for large complex networks, which will facilitate exciting future developments.
"synopsis" may belong to another edition of this title.
David Rosin studied physics at Technische Universität Berlin, Germany, and received his Bachelor Degree in 2009 and his Master Degree in 2011. He researched complex dynamical networks in the framework of a collaboration between Daniel J. Gauthier from Duke University (USA) and Eckehard Schöll from Technische Universität Berlin (Germany) from 2010 till 2014. This work was submitted as a Doctoral Thesis in physics at Technische Universität Berlin in 2014.
This thesis focuses on the dynamics of autonomous Boolean networks, on the basis of Boolean logic functions in continuous time without external clocking. These networks are realized with integrated circuits on an electronic chip as a field programmable gate array (FPGA) with roughly 100,000 logic gates, offering an extremely flexible model system. It allows fast and cheap design cycles and large networks with arbitrary topologies and coupling delays.
The author presents pioneering results on theoretical modeling, experimental realization, and selected applications. In this regard, three classes of novel dynamic behavior are investigated: (i) Chaotic Boolean networks are proposed as high-speed physical random number generators with high bit rates. (ii) Networks of periodic Boolean oscillators are home to long-living transient chimera states, i.e., novel patterns of coexisting domains of spatially coherent (synchronized) and incoherent (desynchronized) dynamics. (iii) Excitable networks exhibit cluster synchronization and can be used as fast artificial Boolean neurons whose spiking patterns can be controlled. This work presents the first experimental platform for large complex networks, which will facilitate exciting future developments.
"About this title" may belong to another edition of this title.
US$ 51.75 shipping from Germany to U.S.A.
Destination, rates & speedsSeller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar3113020089152
Quantity: Over 20 available
Seller: Buchpark, Trebbin, Germany
Condition: Sehr gut. Zustand: Sehr gut | Seiten: 220 | Sprache: Englisch | Produktart: Bücher. Seller Inventory # 25183500/12
Quantity: 1 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9783319135779
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783319135779_new
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This thesis focuses on the dynamics of autonomous Boolean networks, on the basis of Boolean logic functions in continuous time without external clocking. These networks are realized with integrated circuits on an electronic chip as a field programmable gate array (FPGA) with roughly 100,000 logic gates, offering an extremely flexible model system. It allows fast and cheap design cycles and large networks with arbitrary topologies and coupling delays.The author presents pioneering results on theoretical modeling, experimental realization, and selected applications. In this regard, three classes of novel dynamic behavior are investigated: (i) Chaotic Boolean networks are proposed as high-speed physical random number generators with high bit rates. (ii) Networks of periodic Boolean oscillators are home to long-living transient chimera states, i.e., novel patterns of coexisting domains of spatially coherent (synchronized) and incoherent (desynchronized) dynamics. (iii) Excitable networks exhibit cluster synchronization and can be used as fast artificial Boolean neurons whose spiking patterns can be controlled. This work presents the first experimental platform for large complex networks, which will facilitate exciting future developments. 220 pp. Englisch. Seller Inventory # 9783319135779
Quantity: 2 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. xx + 199. Seller Inventory # 26371874930
Quantity: 4 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Buch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - This thesis focuses on the dynamics of autonomous Boolean networks, on the basis of Boolean logic functions in continuous time without external clocking. These networks are realized with integrated circuits on an electronic chip as a field programmable gate array (FPGA) with roughly 100,000 logic gates, offering an extremely flexible model system. It allows fast and cheap design cycles and large networks with arbitrary topologies and coupling delays.The author presents pioneering results on theoretical modeling, experimental realization, and selected applications. In this regard, three classes of novel dynamic behavior are investigated: (i) Chaotic Boolean networks are proposed as high-speed physical random number generators with high bit rates. (ii) Networks of periodic Boolean oscillators are home to long-living transient chimera states, i.e., novel patterns of coexisting domains of spatially coherent (synchronized) and incoherent (desynchronized) dynamics. (iii) Excitable networks exhibit cluster synchronization and can be used as fast artificial Boolean neurons whose spiking patterns can be controlled. This work presents the first experimental platform for large complex networks, which will facilitate exciting future developments. Seller Inventory # 9783319135779
Quantity: 1 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Nominated as an outstanding Ph.D. thesis by the Technical University of Berlin, GermanyReports on important progress in the study of complex networksIntroduces applications in physical random number generation and neuro-inspired computing. Seller Inventory # 11161267
Quantity: Over 20 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. xx + 199 88 Illus. (9 Col.). Seller Inventory # 375251885
Quantity: 4 available
Seller: Mispah books, Redhill, SURRE, United Kingdom
Hardcover. Condition: Like New. Like New. book. Seller Inventory # ERICA77333191357756
Quantity: 1 available