Robust Optimization of Spline Models and Complex Regulatory Networks: Theory, Methods and Applications (Contributions to Management Science) - Hardcover

Özmen, Ayşe

 
9783319307992: Robust Optimization of Spline Models and Complex Regulatory Networks: Theory, Methods and Applications (Contributions to Management Science)

Synopsis

This book introduces methods of robust optimization in multivariate adaptive regression splines (MARS) and Conic MARS in order to handle uncertainty and non-linearity. The proposed techniques are implemented and explained in two-model regulatory systems that can be found in the financial sector and in the contexts of banking, environmental protection, system biology and medicine. The book provides necessary background information on multi-model regulatory networks, optimization and regression. It presents the theory of and approaches to robust (conic) multivariate adaptive regression splines - R(C)MARS – and robust (conic) generalized partial linear models – R(C)GPLM – under polyhedral uncertainty. Further, it introduces spline regression models for multi-model regulatory networks and interprets (C)MARS results based on different datasets for the implementation. It explains robust optimization in these models in terms of both the theory and methodology. In this context it studies R(C)MARS results with different uncertainty scenarios for a numerical example. Lastly, the book demonstrates the implementation of the method in a number of applications from the financial, energy, and environmental sectors, and provides an outlook on future research.

"synopsis" may belong to another edition of this title.

About the Author

Ayşe Özmen has affiliation at Turkish Energy Foundation(TENVA)and Institute of Applied Mathematics of Middle East Technical University (METU), Ankara, Turkey. Her research is on OR, optimization, energy modelling, renewable energy systems, network modelling, regulatory networks, data mining. She received her Doctorate in Scientific Computing at Institute for Applied Mathematics at METU. 

From the Back Cover

This book introduces methods of robust optimization in multivariate adaptive regression splines (MARS) and Conic MARS in order to handle uncertainty and non-linearity. The proposed techniques are implemented and explained in two-model regulatory systems that can be found in the financial sector and in the contexts of banking, environmental protection, system biology and medicine. The book provides necessary background information on multi-model regulatory networks, optimization and regression. It presents the theory of and approaches to robust (conic) multivariate adaptive regression splines - R(C)MARS – and robust (conic) generalized partial linear models – R(C)GPLM – under polyhedral uncertainty. Further, it introduces spline regression models for multi-model regulatory networks and interprets (C)MARS results based on different datasets for the implementation. It explains robust optimization in these models in terms of both the theory and methodology. In this context it studies R(C)MARS results with different uncertainty scenarios for a numerical example. Lastly, the book demonstrates the implementation of the method in a number of applications from the financial, energy, and environmental sectors, and provides an outlook on future research.

"About this title" may belong to another edition of this title.

Other Popular Editions of the Same Title

9783319808901: Robust Optimization of Spline Models and Complex Regulatory Networks: Theory, Methods and Applications (Contributions to Management Science)

Featured Edition

ISBN 10:  3319808907 ISBN 13:  9783319808901
Publisher: Springer, 2018
Softcover