This book presents a detailed review of the state of the art in deep learning approaches for semantic object detection and segmentation in medical image computing, and large-scale radiology database mining. A particular focus is placed on the application of convolutional neural networks, with the theory supported by practical examples. Features: highlights how the use of deep neural networks can address new questions and protocols, as well as improve upon existing challenges in medical image computing; discusses the insightful research experience of Dr. Ronald M. Summers; presents a comprehensive review of the latest research and literature; describes a range of different methods that make use of deep learning for object or landmark detection tasks in 2D and 3D medical imaging; examines a varied selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to interleaved text and image deep mining on a large-scale radiology image database.
"synopsis" may belong to another edition of this title.
This timely text/reference presents a detailed review of the state of the art in deep learning approaches for semantic object detection and segmentation in medical image computing, and large-scale radiology database mining. A particular focus is placed on the application of convolutional neural networks, with the theory supported by practical examples.
Topics and features:
This pioneering volume will prove invaluable to researchers and graduate students wishing to employ deep neural network models and representations for medical image analysis and medical imaging applications.
Dr. Le Lu is a Staff Scientist in the Radiology and Imaging Sciences Department of the National Institutes of Health Clinical Center, Bethesda, MD, USA. Dr. Yefeng Zheng is a Senior Staff Scientist at Siemens Healthcare Technology Center, Princeton, NJ, USA. Dr. Gustavo Carneiro is an Associate Professor in the School of Computer Science at The University of Adelaide, Australia. Dr. Lin Yang is an Associate Professor in the Department of Biomedical Engineering at the University of Florida, Gainesville, FL, USA.
Dr. Le Lu is a Staff Scientist in the Radiology and Imaging Sciences Department of the National Institutes of Health Clinical Center, Bethesda, MD, USA.
Dr. Yefeng Zheng is a Senior Staff Scientist at Siemens Healthcare Technology Center, Princeton, NJ, USA.
Dr. Gustavo Carneiro is an Associate Professor in the School of Computer Science at The University of Adelaide, Australia.
Dr. Lin Yang is an Associate Professor in the Department of Biomedical Engineering at the University of Florida, Gainesville, FL, USA.
"About this title" may belong to another edition of this title.
US$ 55.13 shipping from Germany to U.S.A.
Destination, rates & speedsSeller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Addresses the challenges of applying deep learning for medical image analysisPresents insights from leading experts in the fieldDescribes principles and best practicesDr. Le Lu is a Staff Scientist in the Radiolo. Seller Inventory # 458623062
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents a detailed review of the state of the art in deep learning approaches for semantic object detection and segmentation in medical image computing, and large-scale radiology database mining. A particular focus is placed on the application of convolutional neural networks, with the theory supported by practical examples. Features: highlights how the use of deep neural networks can address new questions and protocols, as well as improve upon existing challenges in medical image computing; discusses the insightful research experience of Dr. Ronald M. Summers; presents a comprehensive review of the latest research and literature; describes a range of different methods that make use of deep learning for object or landmark detection tasks in 2D and 3D medical imaging; examines a varied selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to interleaved text and image deep mining on a large-scale radiology image database. 340 pp. Englisch. Seller Inventory # 9783319827131
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents a detailed review of the state of the art in deep learning approaches for semantic object detection and segmentation in medical image computing, and large-scale radiology database mining. A particular focus is placed on the application of convolutional neural networks, with the theory supported by practical examples. Features: highlights how the use of deep neural networks can address new questions and protocols, as well as improve upon existing challenges in medical image computing; discusses the insightful research experience of Dr. Ronald M. Summers; presents a comprehensive review of the latest research and literature; describes a range of different methods that make use of deep learning for object or landmark detection tasks in 2D and 3D medical imaging; examines a varied selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to interleaved text and image deep mining on a large-scale radiology image database. Seller Inventory # 9783319827131
Quantity: 1 available
Seller: Mispah books, Redhill, SURRE, United Kingdom
Paperback. Condition: New. New. book. Seller Inventory # ERICA80033198271386
Quantity: 1 available