2. Divisors and line bundles ........................ 99. 2.1. Divisors .............................. 99. 2.2. Line bundles ............................ 100. 2.3. Sections of line bundles ....................... 101. 2.4. The Riemann-Roch Theorem ..................... 103. 2.5. Line bundles and embeddings in projective space ............ 105. 2.6. Hyperelliptic curves ......................... 106. 3. Abelian varieties ............................ 108. 3.1. Complex tori and Abelian varieties .................. 108. 3.2. Line bundles on Abelian varieties ................... 109. 3.3. Abelian surfaces .......................... 111. 4. Jacobi varieties ............................. 114. 4.1. The algebraic Jacobian ....................... 114. 4.2. The analytic/transcendental Jacobian ................. 114. 4.3. Abel's Theorem and Jacobi inversion ................. 119. 4.4. Jacobi and Kummer surfaces ..................... 121. 5. Abelian surfaces of type (1,4) ....................... 123. 5.1. The generic case .......................... 123. 5.2. The non-generic case ........................ 124. V. Algebraic completely integrable Hamiltonian systems ........ 127. 1. Introduction .............................. 127. 2. A.c.i. systems ............................. 129. 3. Painlev analysis for a.c.i, systems .................... 135. 4. The linearization of two-dkmensional a.e.i, systems ............. 138. 5. Lax equations ............................. 140. VI. The Mumford systems ..................... 143. 1. Introduction .............................. 143. 2. Genesis ................................ 145. 2.1. The algebra of pseudo-differential operators .............. 145. 2.2. The matrix associated to two commuting operators ........... 146. 2.3. The inverse construction ....................... 150. 2.4. The KP vector fields ........................ 152. ix 3. Multi-Hamiltonian structure and symmetries ................ 155. 3.1. The loop algebra 9(q ........................ 155. 3.2. Reducing the R-brackets and the vector field ............. 157. 4. The odd and the even Mumford systems .................. 161. 4.1. The (odd) Mumford system ..................... 161. 4.2. The even Mumford system ...................... 163.
"synopsis" may belong to another edition of this title.
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 916057-n
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar3113020167036
Seller: Antiquariat Bookfarm, Löbnitz, Germany
Softcover. 2nd ed. x, 256 p. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. C-05111 9783540423379 Sprache: Englisch Gewicht in Gramm: 550. Seller Inventory # 2491358
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9783540423379
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 916057
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783540423379_new
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 916057-n
Quantity: Over 20 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 276 2nd Edition. Seller Inventory # 263040095
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book treats the general theory ofPoisson structures and integrable systems on affine varieties in a systematic way. Special attention is drawn to algebraic completely integrable systems. Several integrable systems are constructed and studied in detail and a few applications of integrable systems to algebraic geometry are worked out.In the second edition some of the concepts in Poisson geometry are clarified by introducting Poisson cohomology; the Mumford systems are constructed from the algebra of pseudo-differential operators, which clarifies their origin; a new explanation of the multi Hamiltonian structure of the Mumford systems is given by using the loop algebra of sl(2); and finally Goedesic flow on SO(4) is added to illustrate the linearizatin algorith and to give another application of integrable systems to algebraic geometry. 276 pp. Englisch. Seller Inventory # 9783540423379
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 276 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Seller Inventory # 5889152
Quantity: 4 available