Many theoretical and experimental studies have shown that a multiple classi?er system is an e?ective technique for reducing prediction errors [9,10,11,20,19]. These studies identify mainly three elements that characterize a set of cl- si?ers: -Therepresentationoftheinput(whateachindividualclassi?erreceivesby wayofinput). -Thearchitectureoftheindividualclassi?ers(algorithmsandparametri- tion). - The way to cause these classi?ers to take a decision together. Itcanbeassumedthatacombinationmethodise?cientifeachindividualcl- si?ermakeserrors'inadi?erentway', sothatitcanbeexpectedthatmostofthe classi?ers can correct the mistakes that an individual one does [1,19]. The term 'weak classi?ers' refers to classi?ers whose capacity has been reduced in some way so as to increase their prediction diversity. Either their internal architecture issimple(e.g., theyusemono-layerperceptronsinsteadofmoresophisticated neural networks), or they are prevented from using all the information available. Sinceeachclassi?erseesdi?erentsectionsofthelearningset, theerrorcorre- tion among them is reduced. It has been shown that the majority vote is the beststrategyiftheerrorsamongtheclassi?ersarenotcorrelated.Moreover, in real applications, the majority vote also appears to be as e?cient as more sophisticated decision rules [2,13]. Onemethodofgeneratingadiversesetofclassi?ersistoupsetsomeaspect ofthetraininginputofwhichtheclassi?erisrather unstable. In the present paper, westudytwodistinctwaystocreatesuchweakenedclassi?ers;i.e.learning set resampling (using the 'Bagging' approach [5]), and random feature subset selection (using 'MFS', a Multiple Feature Subsets approach [3]). Other recent and similar techniques are not discussed here but are also based on modi?cations to the training and/or the feature set [7,8,12,21].
"synopsis" may belong to another edition of this title.
Seller: GuthrieBooks, Spring Branch, TX, U.S.A.
Paperback. Condition: Very Good. Ex-library paperback in very nice condition with the usual markings and attachments. Seller Inventory # DA1411791
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 424. Seller Inventory # 263078260
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. pp. 424 Illus. Seller Inventory # 5851051
Quantity: 1 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. pp. 424. Seller Inventory # 183078270
Quantity: 1 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 919229-n
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar3113020174725
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783540677048_new
Quantity: Over 20 available
Seller: Chiron Media, Wallingford, United Kingdom
Paperback. Condition: New. Seller Inventory # 6666-IUK-9783540677048
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 919229-n
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Many theoretical and experimental studies have shown that a multiple classi er system is an e ective technique for reducing prediction errors [9,10,11,20,19]. These studies identify mainly three elements that characterize a set of cl- si ers: Therepresentationoftheinput(whateachindividualclassi erreceivesby wayofinput). Thearchitectureoftheindividualclassi ers(algorithmsandparametri- tion). The way to cause these classi ers to take a decision together. Itcanbeassumedthatacombinationmethodise cientifeachindividualcl- si ermakeserrors inadi erentway ,sothatitcanbeexpectedthatmostofthe classi ers can correct the mistakes that an individual one does [1,19]. The term weak classi ers refers to classi ers whose capacity has been reduced in some way so as to increase their prediction diversity. Either their internal architecture issimple(e.g.,theyusemono-layerperceptronsinsteadofmoresophisticated neural networks), or they are prevented from using all the information available. Sinceeachclassi erseesdi erentsectionsofthelearningset,theerrorcorre- tion among them is reduced. It has been shown that the majority vote is the beststrategyiftheerrorsamongtheclassi ersarenotcorrelated.Moreover, in real applications, the majority vote also appears to be as e cient as more sophisticated decision rules [2,13]. Onemethodofgeneratingadiversesetofclassi ersistoupsetsomeaspect ofthetraininginputofwhichtheclassi erisrather unstable. In the present paper,westudytwodistinctwaystocreatesuchweakenedclassi ers;i.e.learning set resampling (using the Bagging approach [5]), and random feature subset selection (using MFS , a Multiple Feature Subsets approach [3]). Other recent and similar techniques are not discussed here but are also based on modi cations to the training and/or the feature set [7,8,12,21]. 424 pp. Englisch. Seller Inventory # 9783540677048
Quantity: 2 available