The problem of spectral asymptotics, in particular the problem of the asymptotic dis tribution of eigenvalues, is one of the central problems in the spectral theory of partial differential operators; moreover, it is very important for the general theory of partial differential operators. I started working in this domain in 1979 after R. Seeley found a remainder estimate of the same order as the then hypothetical second term for the Laplacian in domains with boundary, and M. Shubin and B. M. Levitan suggested that I should try to prove Weyl's conjecture. During the past fifteen years I have not left the topic, although I had such intentions in 1985 when the methods I invented seemed to fai! to provide furt her progress and only a couple of not very exciting problems remained to be solved. However, at that time I made the step toward local semiclassical spectral asymptotics and rescaling, and new horizons opened.
"synopsis" may belong to another edition of this title.
Devoted to the methods of microlocal analysis applied to spectral asymptotics with accurate remainder estimates, this long awaited book develops the very powerful machinery of local and microlocal semiclassical spectral asymptotics, as well as methods of combining these asymptotics with spectral estimates. The rescaling technique, an easy to use and very powerful tool, is presented. Many theorems, considered till now as independent and difficult, are now just special cases of easy corollaries of the theorems proved in this book. Most of the results and their proofs are as yet unpublished. Part 1 considers semiclassical microlocal analysis and propagation of singularities inside the domain and near the boundary. Part 2 is on local and microlocal semiclassical spectral asymptotics for general operators and Schrödinger and Dirac operators. After a synthesis in Part 3, the real fun begins in Part 4: the main theorems are applied and numerous results, both known and new, are recovered with little effort. Then, in Chapter 12, non-Weyl asymptotics are obtained for operators in domains with thick cusps, degenerate operators, for spectral Riesz means for operators with singularities. Most of the results and almost all the proofs were never published.
"About this title" may belong to another edition of this title.
US$ 2.64 shipping within U.S.A.
Destination, rates & speedsSeller: Best Price, Torrance, CA, U.S.A.
Condition: New. SUPER FAST SHIPPING. Seller Inventory # 9783642083075
Quantity: 2 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 12036036-n
Quantity: 15 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar3113020216976
Quantity: Over 20 available
Seller: Grand Eagle Retail, Mason, OH, U.S.A.
Paperback. Condition: new. Paperback. This long awaited book is devoted to the methods of microlocal semiclassical analysis in application to spectral asymptotics with accurate remainder estimates. The very powerful machinery of local and microlocal semiclassical spectral asymptotics is developed as well as methods in combining these asymptotics with spectral estimates. The rescaling technique should be mentioned as an easy as to use and very powerful tool. Many theorems, considered before as independent and difficult, now are just special cases of easy corollaries of the theorems proved in the book. Most of the results and almost all the proofs are as yet unpublished The problem of spectral asymptotics, in particular the problem of the asymptotic dis tribution of eigenvalues, is one of the central problems in the spectral theory of partial differential operators; to provide furt her progress and only a couple of not very exciting problems remained to be solved. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9783642083075
Quantity: 1 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 12036036
Quantity: 15 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9783642083075
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783642083075_new
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The problem of spectral asymptotics, in particular the problem of the asymptotic dis tribution of eigenvalues, is one of the central problems in the spectral theory of partial differential operators; moreover, it is very important for the general theory of partial differential operators. I started working in this domain in 1979 after R. Seeley found a remainder estimate of the same order as the then hypothetical second term for the Laplacian in domains with boundary, and M. Shubin and B. M. Levitan suggested that I should try to prove Weyl's conjecture. During the past fifteen years I have not left the topic, although I had such intentions in 1985 when the methods I invented seemed to fai! to provide furt her progress and only a couple of not very exciting problems remained to be solved. However, at that time I made the step toward local semiclassical spectral asymptotics and rescaling, and new horizons opened. 752 pp. Englisch. Seller Inventory # 9783642083075
Quantity: 2 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The pathbreaking work of Victor Ivrii in the last ten years represents very difficult mathematics. Because of its technical difficulty and its size, it cannot be expected to sell to a large audience. However for all those working on this subject,it will be . Seller Inventory # 5047352
Quantity: Over 20 available
Seller: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Ireland
Condition: New. Series: Springer Monographs in Mathematics. Num Pages: 748 pages, biography. BIC Classification: PBKF. Category: (P) Professional & Vocational. Dimension: 234 x 156 x 38. Weight in Grams: 1134. . 2010. 1st ed. Softcover of orig. ed. 1998. Paperback. . . . . Seller Inventory # V9783642083075
Quantity: 15 available