Besides the description of the geometric part of the author's 1965 proof of desingularization of algebraic surfaces and solids in nonzero characteristic, this new edition provides a self-contained introduction to birational algebraic geometry, based only on commutative algebra. It also gives a short proof of analytic desingularization in characteristic zero for any dimension found in 1996.
"synopsis" may belong to another edition of this title.
This new edition describes the geometric part of the author's 1965 proof of desingularization of algebraic surfaces and solids in nonzero characteristic. The book also provides a self-contained introduction to birational algebraic geometry, based only on basic commutative algebra. In addition, it gives a short proof of analytic desingularization in characteristic zero for any dimension found in 1996 and based on a new avatar of an algorithmic trick employed in the original edition of the book. This new edition will inspire further progress in resolution of singularities of algebraic and arithmetical varieties which will be valuable for applications to algebraic geometry and number theory. It can can be used for a second year graduate course. The reference list has been updated.
"About this title" may belong to another edition of this title.
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar3113020217011
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The common solutions of a finite number of polynomial equations in a finite number of variables constitute an algebraic variety. The degrees of freedom of a moving point on the variety is the dimension of the variety. A one-dimensional variety is a curve and a two-dimensional variety is a surface. A three-dimensional variety may be called asolid. Most points of a variety are simple points. Singularities are special points, or points of multiplicity greater than one. Points of multiplicity two are double points, points of multiplicity three are tripie points, and so on. A nodal point of a curve is a double point where the curve crosses itself, such as the alpha curve. A cusp is a double point where the curve has a beak. The vertex of a cone provides an example of a surface singularity. A reversible change of variables gives abirational transformation of a variety. Singularities of a variety may be resolved by birational transformations. 324 pp. Englisch. Seller Inventory # 9783642083518
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 324 2nd Edition. Seller Inventory # 263056588
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Description of the author s proof of desingularization of algebraic surfaces Self-contained introduction to birational algebraic geometry, based only on basic commutative algebra. The unique place where desigularization for solids in characteristic p is don. Seller Inventory # 5047393
Quantity: Over 20 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 324 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Seller Inventory # 5839891
Quantity: 4 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND pp. 324. Seller Inventory # 183056582
Seller: preigu, Osnabrück, Germany
Taschenbuch. Condition: Neu. Resolution of Singularities of Embedded Algebraic Surfaces | Shreeram S. Abhyankar | Taschenbuch | xii | Englisch | 2010 | Springer | EAN 9783642083518 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Seller Inventory # 107175073
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The common solutions of a finite number of polynomial equations in a finite number of variables constitute an algebraic variety. The degrees of freedom of a moving point on the variety is the dimension of the variety. A one-dimensional variety is a curve and a two-dimensional variety is a surface. A three-dimensional variety may be called asolid. Most points of a variety are simple points. Singularities are special points, or points of multiplicity greater than one. Points of multiplicity two are double points, points of multiplicity three are tripie points, and so on. A nodal point of a curve is a double point where the curve crosses itself, such as the alpha curve. A cusp is a double point where the curve has a beak. The vertex of a cone provides an example of a surface singularity. A reversible change of variables gives abirational transformation of a variety. Singularities of a variety may be resolved by birational transformations.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 324 pp. Englisch. Seller Inventory # 9783642083518
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - The common solutions of a finite number of polynomial equations in a finite number of variables constitute an algebraic variety. The degrees of freedom of a moving point on the variety is the dimension of the variety. A one-dimensional variety is a curve and a two-dimensional variety is a surface. A three-dimensional variety may be called asolid. Most points of a variety are simple points. Singularities are special points, or points of multiplicity greater than one. Points of multiplicity two are double points, points of multiplicity three are tripie points, and so on. A nodal point of a curve is a double point where the curve crosses itself, such as the alpha curve. A cusp is a double point where the curve has a beak. The vertex of a cone provides an example of a surface singularity. A reversible change of variables gives abirational transformation of a variety. Singularities of a variety may be resolved by birational transformations. Seller Inventory # 9783642083518
Seller: Mispah books, Redhill, SURRE, United Kingdom
Paperback. Condition: Like New. Like New. book. Seller Inventory # ERICA790364208351X6
Quantity: 1 available