In this work we derive asymptotically stabilizing control laws for
electrical power systems using two nonlinear control synthesis techniques.
For this transient stabilization problem the actuator considered is
a power electronic device, a controllable series capacitor (CSC).
The power system is described using two different nonlinear models - the second order swing equation and the third order flux-decay model.
To start with, the CSC is modeled by the injection model which is
based on the assumption that the CSC dynamics is very fast as compared to the dynamics of the power system and hence can be approximated by an algebraic equation. Here, by neglecting the CSC dynamics, the input vector $g(x)$ in the open loop system takes a
complex form - the injection model. Using this model, interconnection and damping assignment passivity-based control (IDA-PBC)
methodology is demonstrated on two power systems: a single machine infinite bus (SMIB) system and a two machine system.
Further, IDA-PBC is used to derive stabilizing controllers for power systems, where the CSC dynamics are included as a first order system.
Next, we consider a different control methodology, immersion and invariance (I\&I), to synthesize an asymptotically stabilizing control law for the SMIB system with a CSC. The CSC is described by a first order system. As a generalization of I\&I, we incorporate the power balance algebraic constraints in the load bus to the
SMIB swing equation, and extend the design philosophy to a
class of differential algebraic systems. The proposed result is then demonstrated on another example: a two-machine
system with two load buses and a CSC. The controller performances are validated through simulations for all cases.
"synopsis" may belong to another edition of this title.
In this work we derive asymptotically stabilizing control laws for
electrical power systems using two nonlinear control synthesis techniques.
For this transient stabilization problem the actuator considered is
a power electronic device, a controllable series capacitor (CSC).
The power system is described using two different nonlinear models - the second order swing equation and the third order flux-decay model.
To start with, the CSC is modeled by the injection model which is
based on the assumption that the CSC dynamics is very fast as compared to the dynamics of the power system and hence can be approximated by an algebraic equation. Here, by neglecting the CSC dynamics, the input vector $g(x)$ in the open loop system takes a
complex form - the injection model. Using this model, interconnection and damping assignment passivity-based control (IDA-PBC)
methodology is demonstrated on two power systems: a single machine infinite bus (SMIB) system and a two machine system.
Further, IDA-PBC is used to derive stabilizing controllers for power systems, where the CSC dynamics are included as a first order system.
Next, we consider a different control methodology, immersion and invariance (I\&I), to synthesize an asymptotically stabilizing control law for the SMIB system with a CSC. The CSC is described by a first order system. As a generalization of I\&I, we incorporate the power balance algebraic constraints in the load bus to the
SMIB swing equation, and extend the design philosophy to a
class of differential algebraic systems. The proposed result is then demonstrated on another example: a two-machine
system with two load buses and a CSC. The controller performances are validated through simulations for all cases.
"About this title" may belong to another edition of this title.
US$ 2.64 shipping within U.S.A.
Destination, rates & speedsSeller: Basi6 International, Irving, TX, U.S.A.
Condition: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Seller Inventory # ABEJUNE24-272316
Quantity: 9 available
Seller: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.
Condition: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Seller Inventory # ABNR-247754
Quantity: 2 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 104. Seller Inventory # 2654505360
Quantity: 4 available
Seller: SMASS Sellers, IRVING, TX, U.S.A.
Condition: New. Brand New Original US Edition. Customer service! Satisfaction Guaranteed. Seller Inventory # ASNT3-247754
Quantity: 2 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 17867047-n
Quantity: Over 20 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar3113020223060
Quantity: Over 20 available
Seller: Best Price, Torrance, CA, U.S.A.
Condition: New. SUPER FAST SHIPPING. Seller Inventory # 9783642275302
Quantity: 2 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. pp. 104 36 Illus. Seller Inventory # 55054415
Quantity: 4 available
Seller: ALLBOOKS1, Direk, SA, Australia
Brand new book. Fast ship. Please provide full street address as we are not able to ship toPOboxaddress. Seller Inventory # SHUB272316
Quantity: 1 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 17867047
Quantity: Over 20 available