An early view of eukaryotic chromosomes was that of static structures, which stored DNA not in use within a given cell type. It was thought that packaging of DNA into higher levels of chromatin structure would suffice to repress gene expression and that the challenge to the cell would be to rescue specific sequences from these structures. The exten sive packaging of inactive DNA was considered the primary difference between eukaryotic and prokaryotic genomes and except for that point both would be similarly regulated by cis-acting sequences and trans acting factors. Our view of eukaryotic chromosomes has evolved dra matically over the last decade. The picture of chromosomes that is emerging is that of dynamic breathing organelles actively regulating the flow of genetic information from the genome. Indeed chromatin is so fluid that even maintaining gene quiescence is an active process and is tightly regulated. Chromatin dynamics is a consequence of protein complexes that modify histones, remove histone modifications, mobi lize nucleosomes or stabilize nucleosomes. Awide variety of such com plexes have now been described. Some are abundant and may play glo bal roles in chromosome fluidity and function. Others are more rare and specialized for specific functions at discreet loci. Moreover, several complexes share biochemical activities and genetic studies suggest overlapping functions in vivo. Many components of these complexes were first revealed in genetic screens, while others were discovered by novel cell biological or biochemical approaches.
"synopsis" may belong to another edition of this title.
Chromatin dynamics is a consequence of protein complexes that modify histones, remove histone modifications, mobilize nucleosomes or stabilize nucleosomes. A wide variety of such complexes have now been described. Some are abundant and may play global roles, others are more rare and specialized for functions at discreet loci. Several complexes share biochemical activities and genetic studies suggest overlapping functions. Many components of these complexes were first revealed in genetic screens, while others were discovered by novel biochemical approaches. This volume of Current Topics in Microbiology and Immunology reviews a wide variety of protein complexes that modify chromatin.
"About this title" may belong to another edition of this title.
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 19494174-n
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar3113020231659
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9783642629099
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783642629099_new
Quantity: Over 20 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 19494174
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 19494174-n
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -An early view of eukaryotic chromosomes was that of static structures, which stored DNA not in use within a given cell type. It was thought that packaging of DNA into higher levels of chromatin structure would suffice to repress gene expression and that the challenge to the cell would be to rescue specific sequences from these structures. The exten sive packaging of inactive DNA was considered the primary difference between eukaryotic and prokaryotic genomes and except for that point both would be similarly regulated by cis-acting sequences and trans acting factors. Our view of eukaryotic chromosomes has evolved dra matically over the last decade. The picture of chromosomes that is emerging is that of dynamic breathing organelles actively regulating the flow of genetic information from the genome. Indeed chromatin is so fluid that even maintaining gene quiescence is an active process and is tightly regulated. Chromatin dynamics is a consequence of protein complexes that modify histones, remove histone modifications, mobi lize nucleosomes or stabilize nucleosomes. Awide variety of such com plexes have now been described. Some are abundant and may play glo bal roles in chromosome fluidity and function. Others are more rare and specialized for specific functions at discreet loci. Moreover, several complexes share biochemical activities and genetic studies suggest overlapping functions in vivo. Many components of these complexes were first revealed in genetic screens, while others were discovered by novel cell biological or biochemical approaches. 316 pp. Englisch. Seller Inventory # 9783642629099
Quantity: 2 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. An early view of eukaryotic chromosomes was that of static structures, which stored DNA not in use within a given cell type. It was thought that packaging of DNA into higher levels of chromatin structure would suffice to repress gene expression and that the. Seller Inventory # 5065265
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: As New. Unread book in perfect condition. Seller Inventory # 19494174
Quantity: Over 20 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 316. Seller Inventory # 2658569008