Items related to Differential Inclusions: Set-Valued Maps and Viability...

Differential Inclusions: Set-Valued Maps and Viability Theory (Grundlehren der mathematischen Wissenschaften, 264) - Softcover

 
9783642695148: Differential Inclusions: Set-Valued Maps and Viability Theory (Grundlehren der mathematischen Wissenschaften, 264)

Synopsis

A great impetus to study differential inclusions came from the development of Control Theory, i.e. of dynamical systems x'(t) = f(t, x(t), u(t)), x(O)=xo "controlled" by parameters u(t) (the "controls"). Indeed, if we introduce the set-valued map F(t, x)= {f(t, x, u)}ueu then solutions to the differential equations (*) are solutions to the "differen- tial inclusion" (**) x'(t)EF(t, x(t)), x(O)=xo in which the controls do not appear explicitely. Systems Theory provides dynamical systems of the form d x'(t)=A(x(t)) dt (B(x(t))+ C(x(t)); x(O)=xo in which the velocity of the state of the system depends not only upon the x(t) of the system at time t, but also on variations of observations state B(x(t)) of the state. This is a particular case of an implicit differential equation f(t, x(t), x'(t)) = 0 which can be regarded as a differential inclusion (**), where the right-hand side F is defined by F(t, x)= {vlf(t, x, v)=O}. During the 60's and 70's, a special class of differential inclusions was thoroughly investigated: those of the form X'(t)E - A(x(t)), x (0) =xo where A is a "maximal monotone" map. This class of inclusions contains the class of "gradient inclusions" which generalize the usual gradient equations x'(t) = -VV(x(t)), x(O)=xo when V is a differentiable "potential". 2 Introduction There are many instances when potential functions are not differentiable.

"synopsis" may belong to another edition of this title.

Buy Used

XIII, 342p. Broschur. Versand aus...
View this item

US$ 35.12 shipping from Germany to U.S.A.

Destination, rates & speeds

Other Popular Editions of the Same Title

Search results for Differential Inclusions: Set-Valued Maps and Viability...

Stock Image

Aubin, Jean-Pierre
Published by Berlin/Heidelberg, Springer., 1984
ISBN 10: 3642695140 ISBN 13: 9783642695148
Used Softcover

Seller: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

XIII, 342p. Broschur. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics, 264. Sprache: Englisch. Seller Inventory # 7196BB

Contact seller

Buy Used

US$ 19.29
Convert currency
Shipping: US$ 35.12
From Germany to U.S.A.
Destination, rates & speeds

Quantity: 1 available

Add to basket

Seller Image

Aubin, Jean-Pierre; Cellina, Arrigo
Published by Springer, 2012
ISBN 10: 3642695140 ISBN 13: 9783642695148
New Softcover

Seller: GreatBookPrices, Columbia, MD, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. Seller Inventory # 18758121-n

Contact seller

Buy New

US$ 148.81
Convert currency
Shipping: US$ 2.64
Within U.S.A.
Destination, rates & speeds

Quantity: 15 available

Add to basket

Stock Image

Aubin, J.-P.; Cellina, A.
Published by Springer, 2012
ISBN 10: 3642695140 ISBN 13: 9783642695148
New Softcover

Seller: Lucky's Textbooks, Dallas, TX, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. Seller Inventory # ABLIING23Mar3113020234263

Contact seller

Buy New

US$ 147.47
Convert currency
Shipping: US$ 3.99
Within U.S.A.
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Stock Image

A. Cellina
ISBN 10: 3642695140 ISBN 13: 9783642695148
New Paperback

Seller: Grand Eagle Retail, Mason, OH, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Paperback. Condition: new. Paperback. A great impetus to study differential inclusions came from the development of Control Theory, i.e. of dynamical systems x'(t) = f(t, x(t), u(t)), x(O)=xo "controlled" by parameters u(t) (the "controls"). Indeed, if we introduce the set-valued map F(t, x)= {f(t, x, u)}ueu then solutions to the differential equations (*) are solutions to the "differen- tial inclusion" (**) x'(t)EF(t, x(t)), x(O)=xo in which the controls do not appear explicitely. Systems Theory provides dynamical systems of the form d x'(t)=A(x(t)) dt (B(x(t))+ C(x(t)); x(O)=xo in which the velocity of the state of the system depends not only upon the x(t) of the system at time t, but also on variations of observations state B(x(t)) of the state. This is a particular case of an implicit differential equation f(t, x(t), x'(t)) = 0 which can be regarded as a differential inclusion (**), where the right-hand side F is defined by F(t, x)= {vlf(t, x, v)=O}. During the 60's and 70's, a special class of differential inclusions was thoroughly investigated: those of the form X'(t)E - A(x(t)), x (0) =xo where A is a "maximal monotone" map.This class of inclusions contains the class of "gradient inclusions" which generalize the usual gradient equations x'(t) = -VV(x(t)), x(O)=xo when V is a differentiable "potential". 2 Introduction There are many instances when potential functions are not differentiable. A great impetus to study differential inclusions came from the development of Control Theory, i.e. of dynamical systems x'(t) = f(t, x(t), u(t)), x(O)=xo "controlled" by parameters u(t) (the "controls"). Indeed, if we introduce the set-valued map F(t, x)= {f(t, x, u)}ueu then solutions to the differential equations (*) are solutions to the "differenA tial inclusion" (**) x'(t)EF(t, x(t)), x(O)=xo in which the controls do not appear explicitely. Systems Theory provides dynamical systems of the form d x'(t)=A(x(t)) dt (B(x(t))+ C(x(t)); x(O)=xo in which the velocity of the state of the system depends not only upon the x(t) of the system at time t, but also on variations of observations state B(x(t)) of the state. This is a particular case of an implicit differential equation f(t, x(t), x'(t)) = 0 which can be regarded as a differential inclusion (**), where the right-hand side F is defined by F(t, x)= {vlf(t, x, v)=O}. During the 60's and 70's, a special class of differential inclusions was thoroughly investigated: those of the form X'(t)E - A(x(t)), x (0) =xo where A is a "maximal monotone" map. This class of inclusions contains the class of "gradient inclusions" which generalize the usual gradient equations x'(t) = -VV(x(t)), x(O)=xo when V is a differentiable "potential". 2 Introduction There are many instances when potential functions are not differentiable Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9783642695148

Contact seller

Buy New

US$ 168.49
Convert currency
Shipping: FREE
Within U.S.A.
Destination, rates & speeds

Quantity: 1 available

Add to basket

Stock Image

Aubin, J.-P.; Cellina, A.
Published by Springer, 2012
ISBN 10: 3642695140 ISBN 13: 9783642695148
New Softcover

Seller: Ria Christie Collections, Uxbridge, United Kingdom

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. In. Seller Inventory # ria9783642695148_new

Contact seller

Buy New

US$ 157.59
Convert currency
Shipping: US$ 16.06
From United Kingdom to U.S.A.
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Seller Image

Aubin, Jean-Pierre; Cellina, Arrigo
Published by Springer, 2012
ISBN 10: 3642695140 ISBN 13: 9783642695148
Used Softcover

Seller: GreatBookPrices, Columbia, MD, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: As New. Unread book in perfect condition. Seller Inventory # 18758121

Contact seller

Buy Used

US$ 173.66
Convert currency
Shipping: US$ 2.64
Within U.S.A.
Destination, rates & speeds

Quantity: 15 available

Add to basket

Stock Image

Aubin, J.-P.; Cellina, A.
Published by Springer, 2012
ISBN 10: 3642695140 ISBN 13: 9783642695148
New Softcover

Seller: California Books, Miami, FL, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. Seller Inventory # I-9783642695148

Contact seller

Buy New

US$ 182.00
Convert currency
Shipping: FREE
Within U.S.A.
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Seller Image

A. Cellina
ISBN 10: 3642695140 ISBN 13: 9783642695148
New Taschenbuch
Print on Demand

Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -A great impetus to study differential inclusions came from the development of Control Theory, i.e. of dynamical systems x'(t) = f(t, x(t), u(t)), x(O)=xo 'controlled' by parameters u(t) (the 'controls'). Indeed, if we introduce the set-valued map F(t, x)= {f(t, x, u)}ueu then solutions to the differential equations ( ) are solutions to the 'differen tial inclusion' ( ) x'(t)EF(t, x(t)), x(O)=xo in which the controls do not appear explicitely. Systems Theory provides dynamical systems of the form d x'(t)=A(x(t)) dt (B(x(t))+ C(x(t)); x(O)=xo in which the velocity of the state of the system depends not only upon the x(t) of the system at time t, but also on variations of observations state B(x(t)) of the state. This is a particular case of an implicit differential equation f(t, x(t), x'(t)) = 0 which can be regarded as a differential inclusion ( ), where the right-hand side F is defined by F(t, x)= {vlf(t, x, v)=O}. During the 60's and 70's, a special class of differential inclusions was thoroughly investigated: those of the form X'(t)E - A(x(t)), x (0) =xo where A is a 'maximal monotone' map. This class of inclusions contains the class of 'gradient inclusions' which generalize the usual gradient equations x'(t) = -VV(x(t)), x(O)=xo when V is a differentiable 'potential'. 2 Introduction There are many instances when potential functions are not differentiable. 364 pp. Englisch. Seller Inventory # 9783642695148

Contact seller

Buy New

US$ 167.70
Convert currency
Shipping: US$ 26.92
From Germany to U.S.A.
Destination, rates & speeds

Quantity: 2 available

Add to basket

Seller Image

J.-P. Aubin|A. Cellina
Published by Springer Berlin Heidelberg, 2012
ISBN 10: 3642695140 ISBN 13: 9783642695148
New Softcover
Print on Demand

Seller: moluna, Greven, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. 0. Background Notes.- 1. Continuous Partitions of Unity.- 2. Absolutely Continuous Functions.- 3. Some Compactness Theorems.- 4. Weak Convergence and Asymptotic Center of Bounded Sequences.- 5. Closed Convex Hulls and the Mean-Value Theorem.- 6. Lower Semic. Seller Inventory # 5068306

Contact seller

Buy New

US$ 143.01
Convert currency
Shipping: US$ 57.35
From Germany to U.S.A.
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Seller Image

A. Cellina
ISBN 10: 3642695140 ISBN 13: 9783642695148
New Taschenbuch
Print on Demand

Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -A great impetus to study differential inclusions came from the development of Control Theory, i.e. of dynamical systems x'(t) = f(t, x(t), u(t)), x(O)=xo 'controlled' by parameters u(t) (the 'controls'). Indeed, if we introduce the set-valued map F(t, x)= {f(t, x, u)}ueu then solutions to the differential equations (\*) are solutions to the 'differen tial inclusion' (\*\*) x'(t)EF(t, x(t)), x(O)=xo in which the controls do not appear explicitely. Systems Theory provides dynamical systems of the form d x'(t)=A(x(t)) dt (B(x(t))+ C(x(t)); x(O)=xo in which the velocity of the state of the system depends not only upon the x(t) of the system at time t, but also on variations of observations state B(x(t)) of the state. This is a particular case of an implicit differential equation f(t, x(t), x'(t)) = 0 which can be regarded as a differential inclusion (\*\*), where the right-hand side F is defined by F(t, x)= {vlf(t, x, v)=O}. During the 60's and 70's, a special class of differential inclusions was thoroughly investigated: those of the form X'(t)E - A(x(t)), x (0) =xo where A is a 'maximal monotone' map. This class of inclusions contains the class of 'gradient inclusions' which generalize the usual gradient equations x'(t) = -VV(x(t)), x(O)=xo when V is a differentiable 'potential'. 2 Introduction There are many instances when potential functions are not differentiable.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 364 pp. Englisch. Seller Inventory # 9783642695148

Contact seller

Buy New

US$ 167.70
Convert currency
Shipping: US$ 70.23
From Germany to U.S.A.
Destination, rates & speeds

Quantity: 1 available

Add to basket

There are 3 more copies of this book

View all search results for this book