In contrast to the traditional time series analysis, which focuses on the modeling based on the first two moments, the nonlinear GARCH models specifically take the effect of the higher moments into modeling consideration. This helps to explain and model volatility especially in financial time series. The GARCH models are able to capture financial characteristics such as volatility clustering, heavy tails and asymmetry. In much of the literature available for the GARCH models, the methods of estimating parameters include the MLE,GMM and LSE which have distributional and optimality limitations. In this book, the Optimal Estimating Function(EF) based techniques are derived for the GARCH models. The EF incorporate the Skewness and the Kurtosis moments which are common in financial data. It is shown using simulations that the Estimating Function (EF) method competes reasonably well with the MLE method especially for the non-normal data and hence provides an alternative estimation technique.Financial analysts, Econometricians and Time series scholars will find this book important in teaching and in risk computation.
"synopsis" may belong to another edition of this title.
Dr. Jesse Mwangi Lectures at Egerton University, Mathematics Dept., Kenya. His research interests are in Time series analysis and Sample surveys.He has authored articles in peer reviewed journals and has co-authored a book 'statistical methods for informational analysis(An introduction)'.He has many years of teaching experience at University level.
"About this title" may belong to another edition of this title.
US$ 33.21 shipping from United Kingdom to U.S.A.
Destination, rates & speedsUS$ 25.98 shipping from Germany to U.S.A.
Destination, rates & speedsSeller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In contrast to the traditional time series analysis, which focuses on the modeling based on the first two moments, the nonlinear GARCH models specifically take the effect of the higher moments into modeling consideration. This helps to explain and model volatility especially in financial time series. The GARCH models are able to capture financial characteristics such as volatility clustering, heavy tails and asymmetry. In much of the literature available for the GARCH models, the methods of estimating parameters include the MLE,GMM and LSE which have distributional and optimality limitations. In this book, the Optimal Estimating Function(EF) based techniques are derived for the GARCH models. The EF incorporate the Skewness and the Kurtosis moments which are common in financial data. It is shown using simulations that the Estimating Function (EF) method competes reasonably well with the MLE method especially for the non-normal data and hence provides an alternative estimation technique.Financial analysts, Econometricians and Time series scholars will find this book important in teaching and in risk computation. 120 pp. Englisch. Seller Inventory # 9783659302015
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - In contrast to the traditional time series analysis, which focuses on the modeling based on the first two moments, the nonlinear GARCH models specifically take the effect of the higher moments into modeling consideration. This helps to explain and model volatility especially in financial time series. The GARCH models are able to capture financial characteristics such as volatility clustering, heavy tails and asymmetry. In much of the literature available for the GARCH models, the methods of estimating parameters include the MLE,GMM and LSE which have distributional and optimality limitations. In this book, the Optimal Estimating Function(EF) based techniques are derived for the GARCH models. The EF incorporate the Skewness and the Kurtosis moments which are common in financial data. It is shown using simulations that the Estimating Function (EF) method competes reasonably well with the MLE method especially for the non-normal data and hence provides an alternative estimation technique.Financial analysts, Econometricians and Time series scholars will find this book important in teaching and in risk computation. Seller Inventory # 9783659302015
Quantity: 1 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Mwangi JesseDr. Jesse Mwangi Lectures at Egerton University, Mathematics Dept., Kenya. His research interests are in Time series analysis and Sample surveys.He has authored articles in peer reviewed journals and has co-authored a boo. Seller Inventory # 5146950
Quantity: Over 20 available
Seller: Mispah books, Redhill, SURRE, United Kingdom
Paperback. Condition: Like New. Like New. book. Seller Inventory # ERICA79636593020156
Quantity: 1 available