In the extended finite element method (XFEM), a standard displacement based finite element approximation is enriched by additional (special) functions using the framework of partition of unity. In the XFEM, the finite element mesh need not conform to the internal boundaries (cracks, material interfaces, voids, etc.), and hence a single mesh suffices for modeling as well as capturing the evolution of material interfaces and cracks. This book mainly focuses on the application of XFEM in modeling dynamic fracture in thin plates and shells. New crack tip enrichment functions are extracted from analytical solutions and several enrichment schemes are introduced for various elements. As an application, the problem of cracked thin tubes under gaseous detonation loading is simulated by the introduced Dynamic-XFEM formulation and the obtained response of the tube to moving detonation loading is compared with ANSYS-LS DYNA results.
"synopsis" may belong to another edition of this title.
US$ 33.22 shipping from United Kingdom to U.S.A.
Destination, rates & speedsUS$ 25.82 shipping from Germany to U.S.A.
Destination, rates & speedsSeller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In the extended finite element method (XFEM), a standard displacement based finite element approximation is enriched by additional (special) functions using the framework of partition of unity. In the XFEM, the finite element mesh need not conform to the internal boundaries (cracks, material interfaces, voids, etc.), and hence a single mesh suffices for modeling as well as capturing the evolution of material interfaces and cracks. This book mainly focuses on the application of XFEM in modeling dynamic fracture in thin plates and shells. New crack tip enrichment functions are extracted from analytical solutions and several enrichment schemes are introduced for various elements. As an application, the problem of cracked thin tubes under gaseous detonation loading is simulated by the introduced Dynamic-XFEM formulation and the obtained response of the tube to moving detonation loading is compared with ANSYS-LS DYNA results. 88 pp. Englisch. Seller Inventory # 9783659697302
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - In the extended finite element method (XFEM), a standard displacement based finite element approximation is enriched by additional (special) functions using the framework of partition of unity. In the XFEM, the finite element mesh need not conform to the internal boundaries (cracks, material interfaces, voids, etc.), and hence a single mesh suffices for modeling as well as capturing the evolution of material interfaces and cracks. This book mainly focuses on the application of XFEM in modeling dynamic fracture in thin plates and shells. New crack tip enrichment functions are extracted from analytical solutions and several enrichment schemes are introduced for various elements. As an application, the problem of cracked thin tubes under gaseous detonation loading is simulated by the introduced Dynamic-XFEM formulation and the obtained response of the tube to moving detonation loading is compared with ANSYS-LS DYNA results. Seller Inventory # 9783659697302
Quantity: 1 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Rouzegar JafarDr. Jafar Rouzegar is an assistant professor at Department of Mechanical Engineering of Shiraz University of Technology, Iran. He received his B.Sc., M.Sc. and Ph.D. in Mechanical Engineering and published more than 50 . Seller Inventory # 27225774
Quantity: Over 20 available
Seller: Mispah books, Redhill, SURRE, United Kingdom
Paperback. Condition: Like New. Like New. book. Seller Inventory # ERICA75836596973035
Quantity: 1 available