The book investigates the flow of non-Newtonian fluids in porous media using pore-scale network modeling. Non-Newtonian fluids show very complex time and strain dependent behavior and may have initial yield stress. Their common feature is that they do not obey the simple Newtonian relation of proportionality between stress and rate of deformation. They are generally classified into three main categories: time-independent, time-dependent and viscoelastic. Two three-dimensional networks representing a sand pack and Berea sandstone were used. An iterative numerical technique is used to solve the pressure field and obtain the flow rate and apparent viscosity. The time-independent category is investigated using two fluid models: Ellis and Herschel-Bulkley. The analysis confirmed the reliability of the non-Newtonian network model used in this study. Good results are obtained, especially for the Ellis model, when comparing the network model results to experimental data sets found in the literature. The yield-stress phenomenon is also investigated and several numerical algorithms were developed and implemented to predict threshold yield pressure of the network.
"synopsis" may belong to another edition of this title.
The author holds a BEng in electronics engineering from Middlesex University, a BSc in physics from Open University, a PhD in petroleum engineering from Imperial College London, a PhD in Crystallography from Birkbeck College London, and a PhD in atomic and molecular physics with astronomy from University College London.
"About this title" may belong to another edition of this title.
Shipping:
US$ 25.25
From Germany to U.S.A.
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The book investigates the flow of non-Newtonian fluids in porous media using pore-scale network modeling. Non-Newtonian fluids show very complex time and strain dependent behavior and may have initial yield stress. Their common feature is that they do not obey the simple Newtonian relation of proportionality between stress and rate of deformation. They are generally classified into three main categories: time-independent, time-dependent and viscoelastic. Two three-dimensional networks representing a sand pack and Berea sandstone were used. An iterative numerical technique is used to solve the pressure field and obtain the flow rate and apparent viscosity. The time-independent category is investigated using two fluid models: Ellis and Herschel-Bulkley. The analysis confirmed the reliability of the non-Newtonian network model used in this study. Good results are obtained, especially for the Ellis model, when comparing the network model results to experimental data sets found in the literature. The yield-stress phenomenon is also investigated and several numerical algorithms were developed and implemented to predict threshold yield pressure of the network. 196 pp. Englisch. Seller Inventory # 9783659951848
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The book investigates the flow of non-Newtonian fluids in porous media using pore-scale network modeling. Non-Newtonian fluids show very complex time and strain dependent behavior and may have initial yield stress. Their common feature is that they do not obey the simple Newtonian relation of proportionality between stress and rate of deformation. They are generally classified into three main categories: time-independent, time-dependent and viscoelastic. Two three-dimensional networks representing a sand pack and Berea sandstone were used. An iterative numerical technique is used to solve the pressure field and obtain the flow rate and apparent viscosity. The time-independent category is investigated using two fluid models: Ellis and Herschel-Bulkley. The analysis confirmed the reliability of the non-Newtonian network model used in this study. Good results are obtained, especially for the Ellis model, when comparing the network model results to experimental data sets found in the literature. The yield-stress phenomenon is also investigated and several numerical algorithms were developed and implemented to predict threshold yield pressure of the network. Seller Inventory # 9783659951848
Quantity: 1 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Sochi TahaThe author holds a BEng in electronics engineering from Middlesex University, a BSc in physics from Open University, a PhD in petroleum engineering from Imperial College London, a PhD in Crystallography from Birkbeck Colleg. Seller Inventory # 159148279
Quantity: Over 20 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 196 pages. 8.66x5.91x0.45 inches. In Stock. Seller Inventory # 3659951846
Quantity: 1 available