Sie möchten endlich wissen, was sich hinter Schlagworten wie „Data Science“ und „Machine Learning“ eigentlich verbirgt – und was man alles damit anstellen kann? Auf allzu viel Mathematik würden Sie dabei aber gern verzichten? Dann sind Sie hier genau richtig: Dieses Buch bietet einen kompakten Einblick in die wichtigsten Schlüsselkonzepte der Datenwissenschaft und ihrer Algorithmen – und zwar ohne Sie mit mathematischen Formeln und Details zu belasten!
Der Fokus liegt – nach einer übergeordneten Einführung – auf Anwendungen des maschinellen Lernens zur Mustererkennung und Vorhersage von Ergebnissen: In jedem Kapitel wird ein Algorithmus erläutert und mit einem leicht verständlichen, realen Anwendungsbeispiel verknüpft. Die Kombination aus intuitiven Erklärungen und zahlreichen Abbildungen ermöglicht dabei ein grundlegendes Verständnis, das ohne mathematische Formelsprache auskommt. Abschließend werden auch die Grenzen und Nachteile der betrachteten Algorithmen explizit aufgezeigt."synopsis" may belong to another edition of this title.
Annalyn Ng schloss ihr Grundstudium an der University of Michigan (Ann Arbor) ab und war dort auch als Statistiktutorin tätig. Anschließend absolvierte sie ihr Master-Studium am Psychometrics Centre der University of Cambridge, indem Sie dort Social Media-Daten für gezielte Werbung und programmierte kognitive Tests für die Stellenv .ermittlung auswertete. Im Team für Verhaltenswissenschaften bei Disney Research untersuchte sie später psychologische Profile von Konsumenten.
Kenneth Soo hat sein Master-Studium in Statistik an der Stanford University abgeschlossen. Zuvor absolvierte er sein Grundstudium in Mathematik, Operational Research, Statistics and Economics (MORSE) an der University of Warwick: Er war dort als Forschungsassistent bei der Operational Research & Management Sciences Group tätig und arbeitete an der bi-objektiven robusten Optimierung mit Anwendungen in Netzwerken, die zufälligen Ausfällen unterliegen.
Sie möchten endlich wissen, was sich hinter Schlagworten wie „Data Science“ und „Machine Learning“ eigentlich verbirgt – und was man alles damit anstellen kann? Auf allzu viel Mathematik würden Sie dabei aber gern verzichten? Dann sind Sie hier genau richtig: Dieses Buch bietet einen kompakten Einblick in die wichtigsten Schlüsselkonzepte der Datenwissenschaft und ihrer Algorithmen – und zwar ohne Sie mit mathematischen Formeln und Details zu belasten!
Der Fokus liegt – nach einer übergeordneten Einführung – auf Anwendungen des maschinellen Lernens zur Mustererkennung und Vorhersage von Ergebnissen: In jedem Kapitel wird ein Algorithmus erläutert und mit einem leicht verständlichen, realen Anwendungsbeispiel verknüpft. Die Kombination aus intuitiven Erklärungen und zahlreichen Abbildungen ermöglicht dabei ein grundlegendes Verständnis, das ohne mathematische Formelsprache auskommt. Abschließend werden auch die Grenzen und Nachteile der betrachteten Algorithmen explizitaufgezeigt.Dank der exzellent veranschaulichten Konzepte konnten unsere Studenten aus den nicht-technischen Fächern die abstrakten Ideen des maschinellen Lernens ganz intuitiv verstehen. Ethan Chan, Big-Data-Dozent, Stanford University
"About this title" may belong to another edition of this title.
Seller: BuchZeichen-Versandhandel, Freiburg, Germany
Condition: Gebraucht - Gut. Springer Verlag - 2017 - h4. Seller Inventory # G6-A00S-5XQ2
Seller: AwesomeBooks, Wallingford, United Kingdom
Paperback. Condition: Very Good. Data Science - was ist das eigentlich?!: Algorithmen des maschinellen Lernens verst�ndlich erkl�rt This book is in very good condition and will be shipped within 24 hours of ordering. The cover may have some limited signs of wear but the pages are clean, intact and the spine remains undamaged. This book has clearly been well maintained and looked after thus far. Money back guarantee if you are not satisfied. See all our books here, order more than 1 book and get discounted shipping. Seller Inventory # 7719-9783662567753
Quantity: 2 available
Seller: Bahamut Media, Reading, United Kingdom
Condition: Very Good. Shipped within 24 hours from our UK warehouse. Clean, undamaged book with no damage to pages and minimal wear to the cover. Spine still tight, in very good condition. Remember if you are not happy, you are covered by our 100% money back guarantee. Seller Inventory # 6545-9783662567753
Quantity: 1 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Intuitive Erklaerungen und VisualisierungenPraktische Anwendungen zur Veranschaulichung der einzelnen AlgorithmenZusammenfassung am Ende jeden KapitelsVergleich der Vor- und Nachteile der . Seller Inventory # 252497903
Quantity: Over 20 available
Seller: Studibuch, Stuttgart, Germany
paperback. Condition: Sehr gut. 200 Seiten; 9783662567753.2 Gewicht in Gramm: 500. Seller Inventory # 985040
Seller: medimops, Berlin, Germany
Condition: very good. Gut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages. Seller Inventory # M0366256775X-V