The first edition of this book has been out of print for some time and I have decided to follow the publisher's kind suggestion to prepare a new edition. Many examples with explicit inversion formulas and range theo rems have been added, and the group-theoretic viewpoint emphasized. For example, the integral geometric viewpoint of the Poisson integral for the disk leads to interesting analogies with the X-ray transform in Euclidean 3-space. To preserve the introductory flavor of the book the short and self-contained Chapter Von Schwartz' distributions has been added. Here §5 provides proofs of the needed results about the Riesz potentials while §§3-4 develop the tools from Fourier analysis following closely the account in Hormander's books (1963] and [1983]. There is some overlap with my books (1984] and [1994b] which however rely heavily on Lie group theory. The present book is much more elementary. I am indebted to Sine Jensen for a critical reading of parts of the manuscript and to Hilgert and Schlichtkrull for concrete contributions men tioned at specific places in the text. Finally I thank Jan Wetzel and Bonnie Friedman for their patient and skillful preparation of the manuscript.

*"synopsis" may belong to another edition of this title.*

The Radon transform is an important topic in integral geometry which deals with the problem of expressing a function on a manifold in terms of its integrals over certain submanifolds. Solutions to such problems have a wide range of applications, namely to partial differential equations, group representations, X-ray technology, nuclear magnetic resonance scanning, and tomography. This second edition, significantly expanded and updated, presents new material taking into account some of the progress made in the field since 1980.

The first chapter introduces the Radon transform and presents new material on the d-plane transform and applications to the wave equation. Chapter 2 places the Radon transform in a general framework of integral geometry known as a double fibration of a homogeneous space. Several significant examples are developed in detail. Two subsequent chapters treat some specific examples of generalized Radon transforms, for examples, antipodal manifold in compact 2-points homogeneous spaces, and orbital integrals in isotropic Lorentzian manifolds. A final chapter deals with Fourier transforms and distributions, developing all the tools needed in the work.

Aimed at beginning graduate students, this monograph will be useful in the classroom or as a resource for self-study. Readers will find here an accessible introduction to Radon transform theory, an elegant topic in integral geometry.

"This is the second edition of the famous book by Sigurdur Helgason which has been updated in accordance with recent new results in this area. The list of references and bibliographical notes have been essentially extended. Many examples with explicit inversion formulas and range theorems have been added, and the group-theoretic viewpoint is emphasized... [the] author adds a new chapter, Chapter 5, which contains useful information about Fourier transforms, distributions and Riesz potentials. The second edition preserves the nice introductory flavor of the first one. The book will be highly appreciated by the mathematical community."

**--Mathematical Reviews (on the second edition)**

"...well-written and a pleasure to read...provides clear explanations and illustrative figures... Every important point receives a clear proof. The author puts a great deal of effort into motivating his readers. The chapters have been updated by the inclusion of some applications and by giving indications in bibliographical notes of some recent developments... [an] excellent introduction to an area of mathematics which seems to have attracted much new interest...highly recommendable...for graduate students... and researchers."

**--ZAA (on the second edition)**

"Until now the subject [The Radon transform] has lacked anything approaching a systematic exposition aimed at beginners. Publication of the present volume...by one of the chief contributors to the modern theory of the Radon transform, is thus...timely and welcome...Helgason's notes provide the most agreeable introduction to the Radon transform currently available.

[A] reader will be charmed by the interplay of geometry and analysis exhibited here and reassured by the explicit nature of the formulas obtained. [Chapter 3] is the heart of the second half of the book and, on balance, provides an admirable introit to a branch of analysis which deserves to be known by a wider public."

**--SIAM Review (on the first edition)**

*"About this title" may belong to another edition of this title.*

Published by
Birkhauser
(1980)

ISBN 10: 3764330066
ISBN 13: 9783764330064

New
Paperback
Quantity Available: 2

Seller:

Rating

**Book Description **Birkhauser, 1980. Paperback. Book Condition: New. Never used!. Bookseller Inventory # P113764330066

More Information About This Seller | Ask Bookseller a Question

Published by
Birkhauser
(1980)

ISBN 10: 3764330066
ISBN 13: 9783764330064

New
Paperback
Quantity Available: 1

Seller:

Rating

**Book Description **Birkhauser, 1980. Paperback. Book Condition: New. Bookseller Inventory # DADAX3764330066

More Information About This Seller | Ask Bookseller a Question