In recent years, number theory and arithmetic geometry have been enriched by new techniques from noncommutative geometry, operator algebras, dynamical systems, and K-Theory. This volume collects and presents up-to-date research topics in arithmetic and noncommutative geometry and ideas from physics that point to possible new connections between the fields of number theory, algebraic geometry and noncommutative geometry. The articles collected in this volume present new noncommutative geometry perspectives on classical topics of number theory and arithmetic such as modular forms, class field theory, the theory of reductive p-adic groups, Shimura varieties, the local L-factors of arithmetic varieties. They also show how arithmetic appears naturally in noncommutative geometry and in physics, in the residues of Feynman graphs, in the properties of noncommutative tori, and in the quantum Hall effect.

*"synopsis" may belong to another edition of this title.*

Recent interactions between the fields of Noncommutative Geometry and Number Theory

Prof. Dr. Caterina Consani, Department of Mathematics, The Johns Hopkins University, Baltimore, USA

Prof. Dr. Matilde Marcolli, Max-Planck Institute for Mathematics, Bonn, Germany

*"About this title" may belong to another edition of this title.*

Published by
Vieweg+Teubner Verlag
(2006)

ISBN 10: 3834801704
ISBN 13: 9783834801708

New
Hardcover
Quantity Available: 1

Seller

Rating

**Book Description **Vieweg+Teubner Verlag, 2006. Hardcover. Book Condition: New. book. Bookseller Inventory # 3834801704

More Information About This Seller | Ask Bookseller a Question